Ändra sökning
Avgränsa sökresultatet
1 - 5 av 5
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Bärring, Lars
    et al.
    SMHI, Forskningsavdelningen, Klimat (Rossby Centre).
    Raspaud, Martin
    SMHI, Forskningsavdelningen, Meteorologi.
    NetCDF Climate and Forecast (CF) Metadata Conventions2023Rapport (Refereegranskat)
    Abstract [en]

    This document describes the CF conventions for climate and forecast metadata designed to promotethe processing and sharing of files created with the netCDF Application Programmer Interface[NetCDF]. The conventions define metadata that provide a definitive description of what the data ineach variable represents, and of the spatial and temporal properties of the data. This enables usersof data from different sources to decide which quantities are comparable, and facilitates buildingapplications with powerful extraction, regridding, and display capabilities.The CF conventions generalize and extend the COARDS conventions [COARDS]. The extensionsinclude metadata that provides a precise definition of each variable via specification of a standardname, describes the vertical locations corresponding to dimensionless vertical coordinate values,and provides the spatial coordinates of non-rectilinear gridded data. Since climate and forecastdata are often not simply representative of points in space/time, other extensions provide for thedescription of coordinate intervals, multidimensional cells and climatological time coordinates, andindicate how a data value is representative of an interval or cell. This standard also relaxes theCOARDS constraints on dimension order and specifies methods for reducing the size of datasets.

    Ladda ner fulltext (pdf)
    NetCDF Climate and Forecast (CF) Metadata Conventions
  • 2.
    Scheirer, Ronald
    et al.
    SMHI, Forskningsavdelningen, Atmosfärisk fjärranalys.
    Dybbroe, Adam
    SMHI, Samhälle och säkerhet.
    Raspaud, Martin
    SMHI, Samhälle och säkerhet.
    A General Approach to Enhance Short Wave Satellite Imagery by Removing Background Atmospheric Effects2018Ingår i: Remote Sensing, E-ISSN 2072-4292, Vol. 10, nr 4, artikel-id 560Artikel i tidskrift (Refereegranskat)
    Ladda ner fulltext (pdf)
    fulltext
  • 3.
    Raspaud, Martin
    et al.
    SMHI, Samhälle och säkerhet.
    Hoese, David
    Dybbroe, Adam
    SMHI, Samhälle och säkerhet.
    Lahtinen, Panu
    Devasthale, Abhay
    SMHI, Forskningsavdelningen, Atmosfärisk fjärranalys.
    Itkin, Mikhail
    Hamann, Ulrich
    Rasmussen, Lars Orum
    Nielsen, Esben Stigard
    Leppelt, Thomas
    Maul, Alexander
    Kliche, Christian
    Thorsteinsson, Hrobjartur
    PyTroll: An Open-Source, Community-Driven Python Framework to Process Earth Observation Satellite Data2018Ingår i: Bulletin of The American Meteorological Society - (BAMS), ISSN 0003-0007, E-ISSN 1520-0477, Vol. 99, nr 7, s. 1329-1336Artikel i tidskrift (Refereegranskat)
    Ladda ner fulltext (pdf)
    fulltext
  • 4. Pareeth, Sajid
    et al.
    Delucchi, Luca
    Metz, Markus
    Rocchini, Duccio
    Devasthale, Abhay
    SMHI, Forskningsavdelningen, Atmosfärisk fjärranalys.
    Raspaud, Martin
    SMHI, Samhälle och säkerhet.
    Adrian, Rita
    Salmaso, Nico
    Neteler, Markus
    New Automated Method to Develop Geometrically Corrected Time Series of Brightness Temperatures from Historical AVHRR LAC Data2016Ingår i: Remote Sensing, E-ISSN 2072-4292, Vol. 8, nr 3, s. NIL_481-NIL_508Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Analyzing temporal series of satellite data for regional scale studies demand high accuracy in calibration and precise geo-rectification at higher spatial resolution. The Advanced Very High Resolution Radiometer (AVHRR) sensor aboard the National Oceanic and Atmospheric Administration (NOAA) series of satellites provide daily observations for the last 30 years at a nominal resolution of 1.1 km at nadir. However, complexities due to on-board malfunctions and orbital drifts with the earlier missions hinder the usage of these images at their original resolution. In this study, we developed a new method using multiple open source tools which can read level 1B radiances, apply solar and thermal calibration to the channels, remove bow-tie effects on wider zenith angles, correct for clock drifts on earlier images and perform precise geo-rectification by automated generation and filtering of ground control points using a feature matching technique. The entire workflow is reproducible and extendable to any other geographical location. We developed a time series of brightness temperature maps from AVHRR local area coverage images covering the sub alpine lakes of Northern Italy at 1 km resolution (1986-2014; 28 years). For the validation of derived brightness temperatures, we extracted Lake Surface Water Temperature (LSWT) for Lake Garda in Northern Italy and performed inter-platform (NOAA-x vs. NOAA-y) and cross-platform (NOAA-x vs. MODIS/ATSR/AATSR) comparisons. The MAE calculated over available same day observations between the pairs-NOAA-12/14, NOAA-17/18 and NOAA-18/19 are 1.18 K, 0.67 K, 0.35 K, respectively. Similarly, for cross-platform pairs, the MAE varied between 0.5 to 1.5 K. The validation of LSWT from various NOAA instruments with in-situ data shows high accuracy with mean R-2 and RMSE of 0.97 and 0.91 K respectively.

    Ladda ner fulltext (pdf)
    fulltext
  • 5. Pareeth, Sajid
    et al.
    Delucchi, Luca
    Metz, Markus
    Rocchini, Duccio
    Devasthale, Abhay
    SMHI, Forskningsavdelningen, Atmosfärisk fjärranalys.
    Raspaud, Martin
    SMHI, Samhälle och säkerhet.
    Adrian, Rita
    Salmaso, Nico
    Neteler, Markus
    New Automated Method to Develop Geometrically Corrected Time Series of Brightness Temperatures from Historical AVHRR LAC Data2016Ingår i: Remote Sensing, E-ISSN 2072-4292, Vol. 8, nr 3Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Analyzing temporal series of satellite data for regional scale studies demand high accuracy in calibration and precise geo-rectification at higher spatial resolution. The Advanced Very High Resolution Radiometer (AVHRR) sensor aboard the National Oceanic and Atmospheric Administration (NOAA) series of satellites provide daily observations for the last 30 years at a nominal resolution of 1.1 km at nadir. However, complexities due to on-board malfunctions and orbital drifts with the earlier missions hinder the usage of these images at their original resolution. In this study, we developed a new method using multiple open source tools which can read level 1B radiances, apply solar and thermal calibration to the channels, remove bow-tie effects on wider zenith angles, correct for clock drifts on earlier images and perform precise geo-rectification by automated generation and filtering of ground control points using a feature matching technique. The entire workflow is reproducible and extendable to any other geographical location. We developed a time series of brightness temperature maps from AVHRR local area coverage images covering the sub alpine lakes of Northern Italy at 1 km resolution (1986-2014; 28 years). For the validation of derived brightness temperatures, we extracted Lake Surface Water Temperature (LSWT) for Lake Garda in Northern Italy and performed inter-platform (NOAA-x vs. NOAA-y) and cross-platform (NOAA-x vs. MODIS/ATSR/AATSR) comparisons. The MAE calculated over available same day observations between the pairs-NOAA-12/14, NOAA-17/18 and NOAA-18/19 are 1.18 K, 0.67 K, 0.35 K, respectively. Similarly, for cross-platform pairs, the MAE varied between 0.5 to 1.5 K. The validation of LSWT from various NOAA instruments with in-situ data shows high accuracy with mean R-2 and RMSE of 0.97 and 0.91 K respectively.

    Ladda ner fulltext (pdf)
    fulltext
1 - 5 av 5
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf