Change search
Refine search result
2345678 81 - 100 of 346
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 81. Hojberg, Anker Lajer
    et al.
    Hansen, Anne Lausten
    Wachniew, Przemyslaw
    Zurek, Anna J.
    Virtanen, Seija
    Arustiene, Jurga
    Strömqvist, Johan
    SMHI, Research Department, Hydrology.
    Rankinen, Katri
    Refsgaard, Jens Christian
    Review and assessment of nitrate reduction in groundwater in the Baltic Sea Basin2017In: JOURNAL OF HYDROLOGY-REGIONAL STUDIES, ISSN 2214-5818, Vol. 12, p. 50-68Article in journal (Refereed)
  • 82.
    Crochemore, Louise
    et al.
    SMHI, Research Department, Hydrology.
    Ramos, Maria-Helena
    Pappenberger, Florian
    Perrin, Charles
    Seasonal streamflow forecasting by conditioning climatology with precipitation indices2017In: Hydrology and Earth System Sciences, ISSN 1027-5606, E-ISSN 1607-7938, Vol. 21, no 3, p. 1573-1591Article in journal (Refereed)
  • 83.
    Pimentel, Rafael
    et al.
    SMHI, Research Department, Hydrology.
    Herrero, Javier
    Polo, Maria Jose
    Subgrid parameterization of snow distribution at a Mediterranean site using terrestrial photography2017In: Hydrology and Earth System Sciences, ISSN 1027-5606, E-ISSN 1607-7938, Vol. 21, no 2, p. 805-820Article in journal (Refereed)
  • 84. Worman, A.
    et al.
    Lindström, Göran
    SMHI, Research Department, Hydrology.
    Riml, Joakim
    SMHI, Research Department, Hydrology.
    The power of runoff2017In: Journal of Hydrology, ISSN 0022-1694, E-ISSN 1879-2707, Vol. 548, p. 784-793Article in journal (Refereed)
  • 85.
    Pechlivanidis, Ilias
    et al.
    SMHI, Research Department, Hydrology.
    McIntyre, N.
    Wheater, H. S.
    The significance of spatial variability of rainfall on simulated runoff: an evaluation based on the Upper Lee catchment, UK2017In: Hydrology Research, ISSN 1998-9563, E-ISSN 2224-7955, Vol. 48, no 4, p. 1118-1130Article in journal (Refereed)
  • 86.
    Kuentz, Anna
    et al.
    SMHI, Core Services.
    Arheimer, Berit
    SMHI, Research Department, Hydrology.
    Hundecha, Yeshewatesfa
    SMHI, Research Department, Hydrology.
    Wagener, Thorsten
    Understanding hydrologic variability across Europe through catchment classification2017In: Hydrology and Earth System Sciences, ISSN 1027-5606, E-ISSN 1607-7938, Vol. 21, no 6, p. 2863-2879Article in journal (Refereed)
  • 87. Gosling, S. N
    et al.
    Zaherpour, J.
    Mount, N.
    Hattermann, F. F.
    Dankers, R.
    Arheimer, Berit
    SMHI, Research Department, Hydrology.
    Breuer, L.
    Ding, J.
    Haddeland, I.
    Kumar, R.
    Kundu, D.
    Liu, J.
    van Griensven, A.
    Veldkamp, T.I.E.
    Vetter, T.
    Wang, X.
    Zhan, X.
    A comparison of changes in river runoff from multiple global and catchment-scale hydrological models under global warming scenarios of 1°C, 2°C and 3°C2016In: Climatic Change, ISSN 0165-0009, E-ISSN 1573-1480, p. 1-19Article in journal (Refereed)
  • 88.
    Hundecha, Yeshewatesfa
    et al.
    SMHI, Research Department, Hydrology.
    Arheimer, Berit
    SMHI, Research Department, Hydrology.
    Donnelly, Chantal
    SMHI, Research Department, Hydrology.
    Pechlivanidis, Ilias
    SMHI, Research Department, Hydrology.
    A regional parameter estimation scheme for a pan-European multi-basin model.2016In: Journal of Hydrology, ISSN 0022-1694, E-ISSN 1879-2707, Vol. 6, p. 90-111Article in journal (Refereed)
  • 89.
    Pechlivanidis, Ilias
    et al.
    SMHI, Research Department, Hydrology.
    Arheimer, Berit
    SMHI, Research Department, Hydrology.
    Donnelly, Chantal
    SMHI, Research Department, Hydrology.
    Hundecha, Yeshewatesfa
    SMHI, Research Department, Hydrology.
    Huang, S.
    Aich, V.
    Samaniego, L.
    Eisner, S.
    Shi, P.
    Analysis of hydrological extremes at different hydro-climatic regimes under present and future conditions.2016In: Climatic Change, ISSN 0165-0009, E-ISSN 1573-1480Article in journal (Refereed)
  • 90. Yin, Yunxing
    et al.
    Jiang, Sanyuan
    Pers, Charlotta
    SMHI, Research Department, Hydrology.
    Yang, Xiaoying
    Liu, Qun
    Yuan, Jin
    Yao, Mingxing
    He, Yi
    Luo, Xingzhang
    Zheng, Zheng
    Assessment of the Spatial and Temporal Variations of Water Quality for Agricultural Lands with Crop Rotation in China by Using a HYPE Model2016In: International Journal of Environmental Research and Public Health, ISSN 1661-7827, E-ISSN 1660-4601, Vol. 13, no 3Article in journal (Refereed)
    Abstract [en]

    Many water quality models have been successfully used worldwide to predict nutrient losses from anthropogenically impacted catchments, but hydrological and nutrient simulations with limited data are difficult considering the transfer of model parameters and complication of model calibration and validation. This study aims: (i) to assess the performance capabilities of a new and relatively more advantageous model, namely, Hydrological Predictions for the Environment (HYPE), that simulates stream flow and nutrient load in agricultural areas by using a multi-site and multi-objective parameter calibration method and (ii) to investigate the temporal and spatial variations of total nitrogen (TN) and total phosphorous (TP) concentrations and loads with crop rotation by using the model for the first time. A parameter estimation tool (PEST) was used to calibrate parameters. Results show that the parameters related to the effective soil porosity were highly sensitive to hydrological modeling. N balance was largely controlled by soil denitrification processes. P balance was influenced by the sedimentation rate and production/decay of P in rivers and lakes. The model reproduced the temporal and spatial variations of discharge and TN/TP relatively well in both calibration (2006-2008) and validation (2009-2010) periods. Among the obtained data, the lowest Nash-Suttclife efficiency of discharge, daily TN load, and daily TP load were 0.74, 0.51, and 0.54, respectively. The seasonal variations of daily TN concentrations in the entire simulation period were insufficient, indicated that crop rotation changed the timing and amount of N output. Monthly TN and TP simulation yields revealed that nutrient outputs were abundant in summer in terms of the corresponding discharge. The area-weighted TN and TP load annual yields in five years showed that nutrient loads were extremely high along Hong and Ru rivers, especially in agricultural lands.

  • 91.
    Crochemore, Louise
    et al.
    SMHI, Research Department, Hydrology.
    Ramos, Maria-Helena
    Pappenberger, Florian
    Bias correcting precipitation forecasts to improve the skill of seasonal streamflow forecasts2016In: Hydrology and Earth System Sciences, ISSN 1027-5606, E-ISSN 1607-7938, Vol. 20, no 9, p. 3601-3618Article in journal (Refereed)
  • 92. Akselsson, Cecilia
    et al.
    Olsson, Jonas
    SMHI, Research Department, Hydrology.
    Belyazid, Salim
    Capell, Réne
    SMHI, Research Department, Hydrology.
    Can increased weathering rates due to future warming compensate for base cation losses following whole-tree harvesting in spruce forests?2016In: Biogeochemistry, ISSN 0168-2563, E-ISSN 1573-515X, Vol. 128, no 1-2, p. 89-105Article in journal (Refereed)
  • 93. Gelfan, Alexander
    et al.
    Gustafsson, David
    SMHI, Research Department, Hydrology.
    Motovilov, Yury
    Arheimer, Berit
    SMHI, Research Department, Hydrology.
    Kalugin,, Andrey
    Krylenko,, Inna
    Lavrenov, Alexander
    Climate change impact on the water regime of two great Arctic rivers: modeling and uncertainty issues2016In: Climatic Change, ISSN 0165-0009, E-ISSN 1573-1480, p. 1-17Article in journal (Refereed)
  • 94.
    Andersson, Jafet
    et al.
    SMHI, Research Department, Hydrology.
    Arheimer, Berit
    SMHI, Research Department, Hydrology.
    Hjerdt, Niclas
    SMHI, Core Services.
    Combine and Share Essential Knowledge for Sustainable2016In: The Solutions Journal, ISSN 2154-0926, Vol. 7, no 3, p. 30-32Article in journal (Other (popular science, discussion, etc.))
  • 95.
    Andersson, Jafet
    et al.
    SMHI, Research Department, Hydrology.
    Arheimer, Berit
    SMHI, Research Department, Hydrology.
    Hjerdt, Niclas
    SMHI, Core Services.
    Combine and Share Essential Knowledge for Sustainable Water Management2016In: Solutions Journal, ISSN 2154-0896, E-ISSN 2154-0926, Vol. 7, no 3Article in journal (Other (popular science, discussion, etc.))
  • 96. Emerton, Rebecca E.
    et al.
    Stephens, Elisabeth M.
    Pappenberger, Florian
    Pagano, Thomas C.
    Weerts, Albrecht H.
    Wood, Andy W.
    Salamon, Peter
    Brown, James D.
    Hjerdt, Niclas
    SMHI, Core Services.
    Donnelly, Chantal
    SMHI, Research Department, Hydrology.
    Baugh, Calum A.
    Cloke, Hannah L.
    Continental and global scale flood forecasting systems2016In: WILEY INTERDISCIPLINARY REVIEWS-WATER, Vol. 3, no 3, p. 391-418Article in journal (Refereed)
    Abstract [en]

    Floods are the most frequent of natural disasters, affecting millions of people across the globe every year. The anticipation and forecasting of floods at the global scale is crucial to preparing for severe events and providing early awareness where local flood models and warning services may not exist. As numerical weather prediction models continue to improve, operational centers are increasingly using their meteorological output to drive hydrological models, creating hydrometeorological systems capable of forecasting river flow and flood events at much longer lead times than has previously been possible. Furthermore, developments in, for example, modelling capabilities, data, and resources in recent years have made it possible to produce global scale flood forecasting systems. In this paper, the current state of operational large-scale flood forecasting is discussed, including probabilistic forecasting of floods using ensemble prediction systems. Six state-of-the-art operational large-scale flood forecasting systems are reviewed, describing similarities and differences in their approaches to forecasting floods at the global and continental scale. Operational systems currently have the capability to produce coarse-scale discharge forecasts in the medium-range and disseminate forecasts and, in some cases, early warning products in real time across the globe, in support of national forecasting capabilities. With improvements in seasonal weather forecasting, future advances may include more seamless hydrological forecasting at the global scale alongside a move towards multi-model forecasts and grand ensemble techniques, responding to the requirement of developing multi-hazard early warning systems for disaster risk reduction. (C) 2016 The Authors. WIREs Water published by Wiley Periodicals, Inc.

  • 97.
    Berg, Peter
    et al.
    SMHI, Research Department, Hydrology.
    Norin, Lars
    SMHI, Research Department, Atmospheric remote sensing.
    Olsson, Jonas
    SMHI, Research Department, Hydrology.
    Creation of a high resolution precipitation data set by merging gridded gauge data and radar observations for Sweden2016In: Journal of Hydrology, ISSN 0022-1694, E-ISSN 1879-2707, Vol. 541, p. 6-13Article in journal (Refereed)
  • 98. Zhang, Linus
    et al.
    Gustafsson, David
    SMHI, Research Department, Hydrology.
    Editorial: 'The Nordic Hydrology Model' - Linking science and practice2016In: HYDROLOGY RESEARCH, ISSN 1998-9563, Vol. 47, no 4, p. 671-671Article in journal (Refereed)
  • 99. Aich, Valentin
    et al.
    Liersch, Stefan
    Vetter, Tobias
    Fournet, Samuel
    Andersson, Jafet
    SMHI, Research Department, Hydrology.
    Calmanti, Sandro
    van Weert, Frank H. A.
    Hattermann, Fred F.
    Paton, Eva N.
    Flood projections within the Niger River Basin under future land use and climate change2016In: Science of the Total Environment, ISSN 0048-9697, E-ISSN 1879-1026, Vol. 562, p. 666-677Article in journal (Refereed)
    Abstract [en]

    This study assesses future flood risk in the Niger River Basin (NRB), for the first time considering the simultaneous effects of both projected climate change and land use changes. For this purpose, an ecohydrological process-based model (SWIM) was set up and validated for past climate and land use dynamics of the entire NRB. Model runs for future flood risks were conducted with an ensemble of 18 climate models, 13 of them dynamically downscaled from the CORDEX Africa project and five statistically downscaled Earth System Models. Two climate and two land use change scenarios were used to cover a broad range of potential developments in the region. Two flood indicators (annual 90th percentile and the 20-year return flood) were used to assess the future flood risk for the Upper, Middle and Lower Niger as well as the Benue. The modeling results generally show increases of flood magnitudes when comparing a scenario period in the near future (2021-2050) with a base period (1976-2005). Land use effects are more uncertain, but trends and relative changes for the different catchments of the NRB seem robust. The dry areas of the Sahelian and Sudanian regions of the basin show a particularly high sensitivity to climatic and land use changes, with an alarming increase of flood magnitudes in parts. A scenario with continuing transformation of natural vegetation into agricultural land and urbanization intensifies the flood risk in all parts of the NRB, while a "regreening" scenario can reduce flood magnitudes to some extent. Yet, land use change effects were smaller when compared to the effects of climate change. In the face of an already existing adaptation deficit to catastrophic flooding in the region, the authors argue for a mix of adaptation and mitigation efforts in order to reduce the flood risk in the NRB. (C) 2016 Elsevier B.V. All rights reserved.

  • 100.
    Olsson, Jonas
    et al.
    SMHI, Research Department, Hydrology.
    Arheimer, Berit
    SMHI, Research Department, Hydrology.
    Borris, Matthias
    Donnelly, Chantal
    SMHI, Research Department, Hydrology.
    Foster, Kean
    SMHI, Research Department, Hydrology.
    Nikulin, Grigory
    SMHI, Research Department, Climate research - Rossby Centre.
    Persson, Magnus
    SMHI.
    Perttu, Anna-Maria
    Uvo, Cintia B.
    Viklander, Maria
    Yang, Wei
    SMHI, Research Department, Hydrology.
    Hydrological Climate Change Impact Assessment at Small and Large Scales: Key Messages from Recent Progress in Sweden2016In: CLIMATE, ISSN 2225-1154, Vol. 4, no 3, article id 39Article in journal (Refereed)
2345678 81 - 100 of 346
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.9
|