Change search
Refine search result
78910 451 - 491 of 491
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 451. Tourigny, Etienne
    et al.
    Jones, Colin
    SMHI, Research Department, Climate research - Rossby Centre.
    An analysis of regional climate model performance over the tropical Americas. Part II: simulating subseasonal variability of precipitation associated with ENSO forcing2009In: Tellus. Series A, Dynamic meteorology and oceanography, ISSN 0280-6495, E-ISSN 1600-0870, Vol. 61, no 3, p. 343-356Article in journal (Refereed)
    Abstract [en]

    The El Nino/Southern Oscillation (ENSO) constitutes a major source of potential predictability in the tropics. The majority of past seasonal prediction studies have concentrated on precipitation anomalies at the seasonal mean timescale. However, fields such as agriculture and water resource management require higher time frequency forecasts of precipitation variability. Regional climate models (RCMs), with their increased resolution, may offer one means of improving general circulation model forecasts of higher time frequency precipitation variability. Part I of this study evaluated the ability of the Rossby Centre regional atmospheric model (RCA), forced by analysed boundary conditions, to simulate seasonal mean precipitation anomalies over the tropical Americas associated with ENSO variability. In this paper the same integrations are analysed, with the focus now on precipitation anomalies at subseasonal (pentad) timescales. RCA simulates the climatological annual cycle of pentad-mean precipitation intensity quite accurately. The timing of the rainy season (onset, demise and length) is well simulated, with biases generally of less than 2 weeks. Changes in the timing and duration of the rainy season, associated with ENSO forcing, are also well captured. Finally, pentad-mean rainfall intensity distributions are simulated quite accurately, as are shifts in these distributions associated with ENSO forcing.

  • 452.
    Trolez, Matthieu
    et al.
    SMHI.
    Karlsson, Karl-Göran
    SMHI, Research Department, Atmospheric remote sensing.
    Johnston, Sheldon
    SMHI, Research Department, Climate research - Rossby Centre.
    Albert, Peter
    SMHI.
    The impact of varying NWP background information on CM-SAF cloud products: Visiting Scientist Report Climate Monitoring SAF (CM-SAF)2008Report (Other academic)
    Abstract [en]

    The purpose of this study was to quantify the impact of using ancillary data from Numerical Weather Prediction (NWP) models in the derivation of cloud parameters from satellite data in the Climate Monitoring Satellite Application Facility (CM-SAF) project. In particular, the sensitivity to the NWP-analysed surface temperature parameter was studied.A one-year dataset of satellite images over the Scandinavian region from the Advanced Very High Resolution Radiometer (AVHRR) on the polar orbiting NOAA satellites was studied. Cloud products were generated by use of the Polar Platform System (PPS) cloud software and the sensitivity to perturbations of the NWP-analysed surface temperature was investigated. In addition, a study on the importance of the chosen NWP model was also included. Results based on three different NWP models (ECMWF, HIRLAM and GME) were analysed.It was concluded that the NWP model influence on the results appears to be small. An interchange of NWP model analysis input data to the PPS cloud processing method did only lead to marginal changes of the resulting CM-SAF cloud products. Thus, the current CM-SAF cloud algorithmsproduce robust results that are not heavily dependent on NWP model background information. Nevertheless, the study demonstrated a natural high sensitivity to the NWP-analysed surface skin temperature. This parameter is crucial for the a priori determination of the thresholds used for the infrared cloud tests of the PPS method. It was shown that a perturbation of the surface skin temperature of one K generally resulted in a change of cloud cover of about 0.5-1 % in absolute cloud amount units. However, if perturbations were in the range 5-10 K the change in cloud cover increased to values between 1 to 2 % per degree, especially for positive perturbations. Important here is that a positive surface temperature perturbation always leads to an increase in the resulting cloud amounts and vice versa.

  • 453. Van den Hurk, B
    et al.
    Hirschi, M
    Schar, C
    Lenderink, G
    Van Meijgaard, E
    Van Ulden, A
    Rockel, B
    Hagemann, S
    Graham, Phil
    SMHI, Research Department, Climate research - Rossby Centre.
    Kjellström, Erik
    SMHI, Research Department, Climate research - Rossby Centre.
    Jones, R
    Soil control on runoff response to climate change in regional climate model simulations2005In: Journal of Climate, ISSN 0894-8755, E-ISSN 1520-0442, Vol. 18, no 17, p. 3536-3551Article in journal (Refereed)
    Abstract [en]

    Simulations with seven regional climate models driven by a common control climate simulation of a GCM carried out for Europe in the context of the (European Union) EU-funded Prediction of Regional scenarios and Uncertainties for Defining European Climate change risks and Effects (PRUDENCE) project were analyzed with respect to land surface hydrology in the Rhine basin. In particular, the annual cycle of the terrestrial water storage was compared to analyses based on the 40-yr ECMWF Re-Analysis (ERA-40) atmospheric convergence and observed Rhine discharge data. In addition, an analysis was made of the partitioning of convergence anomalies over anomalies in runoff and storage. This analysis revealed that most models underestimate the size of the water storage and consequently overestimated the response of runoff to anomalies in net convergence. The partitioning of these anomalies over runoff and storage was indicative for the response of the simulated runoff to a projected climate change consistent with the greenhouse gas A2 Synthesis Report on Emission Scenarios (SRES). In particular, the annual cycle of runoff is affected largely by the terrestrial storage reservoir. Larger storage capacity leads to smaller changes in both wintertime and summertime monthly mean runoff. The sustained summertime evaporation resulting from larger storage reservoirs may have a noticeable impact on the summertime surface temperature projections.

  • 454. van den Hurk, B J J M
    et al.
    Graham, Phil
    SMHI, Research Department, Climate research - Rossby Centre.
    Viterbo, P
    Comparison of land surface hydrology in regional climate simulations of the Baltic Sea catchment2002In: Journal of Hydrology, ISSN 0022-1694, E-ISSN 1879-2707, Vol. 255, no 1-4, p. 169-193Article in journal (Refereed)
    Abstract [en]

    Simulations with a regional climate model RACMO were carried out over the catchment area of the Baltic Sea for the growing season 1995. Two different surface schemes were included which in particular differed with respect to the parameterization of runoff. In the first scheme (taken from ECHAM4), runoff is a function of the subgrid distribution of the soil moisture saturation. In the second model (taken from ECMWF), runoff is a result of deep-water drainage. A large-scale hydrological model of the catchment, HBV-Baltic, was calibrated to river discharge data and forced with observed precipitation, yielding independent comparison material of runoff of the two RACMO simulations. The simulations showed that the temporal and spatial simulation of precipitation in the area is sensitive to the choice of the land surface scheme in RACMO. This supported the motivation of analysing the land surface hydrological budgets in a coupled mode. The comparison of RACMO with HBV-Baltic revealed that the frequency distribution of runoff in the ECMWF scheme shows very little runoff variability at high frequencies, while in ECHAM4 and HBV the snow melt and (liquid) precipitation are followed by fast responding runoff events. The seasonal cycle of soil water depletion and surface evaporation was evaluated by comparison of model scores with respect to relative humidity. Results suggest that the surface evaporation in the ECMWF scheme is too strong in late spring and early summer, giving rise to too much drying later in the season. (C) 2002 Elsevier Science B.V. All rights reserved.

  • 455. van Lipzig, Nicole P. M.
    et al.
    Schroeder, Marc
    Crewell, Susanne
    Ament, Felix
    Chaboureau, Jean-Pierre
    Loehnert, Ulrich
    Matthias, Volker
    van Meijgaard, Erik
    Quante, Markus
    Willén, Ulrika
    SMHI, Research Department, Climate research - Rossby Centre.
    Yen, Wenchieh
    Model predicted low-level cloud parameters - Part I: Comparison with observations from the BALTEX Bridge Campaigns2006In: Atmospheric research, ISSN 0169-8095, E-ISSN 1873-2895, Vol. 82, no 1-2, p. 55-82Article in journal (Refereed)
    Abstract [en]

    The BALTEX Bridge Campaigns (BBC), which were held in the Netherlands in 2001 and 2003 around the Cabauw Experimental Site for Atmospheric Research (CESAR), have provided detailed information on clouds. This paper is an illustration of how these measurements can be used to investigate whether 'state-of-the-art' atmospheric models are capable of adequately representing clouds. Here, we focus on shallow low-level clouds with a substantial amount of liquid water. In situ, ground-based and satellite remote sensing measurements were compared with the output of three non-hydrostatic regional models (Lokal-Modell, LM.- M&so-NH: fifth-generation Mesoscale Model, MM5) and two hydrostatic regional climate models (Regional Atmospheric Climate Model version 2, RACMO2; Rossby Centre Atmospheric Model, RCA). For the two selected days, Meso-NH and MM5 reproduce the measured vertical extent of the shallow clouds, but the liquid water content of the clouds is generally overestimated. In LM and the climate models the inversion is too weak and located at a level too close to the surface resulting in an overestimation of the vertical extent of the clouds. A sensitivity integration with RACM02 shows that the correspondence between model output and measurements can be improved by a doubling of the vertical resolution; this induces an increase in the modelled inversion strenath and cloud top pressure. LM and Meso-NH underestimate the lifetime of clouds. A comparison between model output and cloud cover derived from the Moderate Resolution Imaging Spectrometer (MODIS) indicates that this deficiency is not due to advection of too small cloud systems,- it is rather due to an overestimation of the variability in the vertical velocity. All models overestimate the specific humidity near the surface and underestimate it at higher atmospheric levels, indicating that the models underestimate the mixing of moisture in the boundary layer. This deficiency is slightly reduced by inclusion of parameterised shallow convection in the non-hydrostatic models, which enhances the mixing of heat and moisture in the boundary layer. Consequently, the explicitly resolved updrafts weaken resulting in reduced condensation rates and lower liquid water path. The temporal variability of cloud occurrence is hardly affected by inclusion of parameterised shallow convection. (c) 2006 Elsevier B.V. All rights reserved.

  • 456. Vanniere, Benoit
    et al.
    Demory, Marie-Estelle
    Vidale, Pier Luigi
    Schiemann, Reinhard
    Roberts, Malcolm J.
    Roberts, Christopher D.
    Matsueda, Mio
    Terray, Laurent
    Koenigk, Torben
    SMHI, Research Department, Climate research - Rossby Centre.
    Senan, Retish
    Multi-model evaluation of the sensitivity of the global energy budget and hydrological cycle to resolution2019In: Climate Dynamics, ISSN 0930-7575, E-ISSN 1432-0894, Vol. 52, no 11, p. 6817-6846Article in journal (Refereed)
  • 457. Vautard, Robert
    et al.
    Gobiet, Andreas
    Jacob, Daniela
    Belda, Michal
    Colette, Augustin
    Deque, Michel
    Fernandez, Jesus
    Garcia-Diez, Markel
    Goergen, Klaus
    Guettler, Ivan
    Halenka, Tomas
    Karacostas, Theodore
    Katragkou, Eleni
    Keuler, Klaus
    Kotlarski, Sven
    Mayer, Stephanie
    van Meijgaard, Erik
    Nikulin, Grigory
    SMHI, Research Department, Climate research - Rossby Centre.
    Patarcic, Mirta
    Scinocca, John
    Sobolowski, Stefan
    Suklitsch, Martin
    Teichmann, Claas
    Warrach-Sagi, Kirsten
    Wulfmeyer, Volker
    Yiou, Pascal
    The simulation of European heat waves from an ensemble of regional climate models within the EURO-CORDEX project2013In: Climate Dynamics, ISSN 0930-7575, E-ISSN 1432-0894, Vol. 41, no 9-10, p. 2555-2575Article in journal (Refereed)
    Abstract [en]

    The ability of a large ensemble of regional climate models to accurately simulate heat waves at the regional scale of Europe was evaluated. Within the EURO-CORDEX project, several state-of-the art models, including non-hydrostatic meso-scale models, were run for an extended time period (20 years) at high resolution (12 km), over a large domain allowing for the first time the simultaneous representation of atmospheric phenomena over a large range of spatial scales. Eight models were run in this configuration, and thirteen models were run at a classical resolution of 50 km. The models were driven with the same boundary conditions, the ERA-Interim re-analysis, and except for one simulation, no observations were assimilated in the inner domain. Results, which are compared with daily temperature and precipitation observations (ECA&D and E-OBS data sets) show that, even forced by the same re-analysis, the ensemble exhibits a large spread. A preliminary analysis of the sources of spread, using in particular simulations of the same model with different parameterizations, shows that the simulation of hot temperature is primarily sensitive to the convection and the microphysics schemes, which affect incoming energy and the Bowen ratio. Further, most models exhibit an overestimation of summertime temperature extremes in Mediterranean regions and an underestimation over Scandinavia. Even after bias removal, the simulated heat wave events were found to be too persistent, but a higher resolution reduced this deficiency. The amplitude of events as well as the variability beyond the 90th percentile threshold were found to be too strong in almost all simulations and increasing resolution did not generally improve this deficiency. Resolution increase was also shown to induce large-scale 90th percentile warming or cooling for some models, with beneficial or detrimental effects on the overall biases. Even though full causality cannot be established on the basis of this evaluation work, the drivers of such regional differences were shown to be linked to changes in precipitation due to resolution changes, affecting the energy partitioning. Finally, the inter-annual sequence of hot summers over central/southern Europe was found to be fairly well simulated in most experiments despite an overestimation of the number of hot days and of the variability. The accurate simulation of inter-annual variability for a few models is independent of the model bias. This indicates that internal variability of high summer temperatures should not play a major role in controlling inter-annual variability. Despite some improvements, especially along coastlines, the analyses conducted here did not allow us to generally conclude that a higher resolution is clearly beneficial for a correct representation of heat waves by regional climate models. Even though local-scale feedbacks should be better represented at high resolution, combinations of parameterizations have to be improved or adapted accordingly.

  • 458. Vautard, Robert
    et al.
    Gobiet, Andreas
    Sobolowski, Stefan
    Kjellström, Erik
    SMHI, Research Department, Climate research - Rossby Centre.
    Stegehuis, Annemiek
    Watkiss, Paul
    Mendlik, Thomas
    Landgren, Oskar
    Nikulin, Grigory
    SMHI, Research Department, Climate research - Rossby Centre.
    Teichmann, Claas
    Jacob, Daniela
    The European climate under a 2 degrees C global warming2014In: Environmental Research Letters, ISSN 1748-9326, E-ISSN 1748-9326, Vol. 9, no 3, article id 034006Article in journal (Refereed)
    Abstract [en]

    A global warming of 2 degrees C relative to pre-industrial climate has been considered as a threshold which society should endeavor to remain below, in order to limit the dangerous effects of anthropogenic climate change. The possible changes in regional climate under this target level of global warming have so far not been investigated in detail. Using an ensemble of 15 regional climate simulations downscaling six transient global climate simulations, we identify the respective time periods corresponding to 2 degrees C global warming, describe the range of projected changes for the European climate for this level of global warming, and investigate the uncertainty across the multi-model ensemble. Robust changes in mean and extreme temperature, precipitation, winds and surface energy budgets are found based on the ensemble of simulations. The results indicate that most of Europe will experience higher warming than the global average. They also reveal strong distributional patterns across Europe, which will be important in subsequent impact assessments and adaptation responses in different countries and regions. For instance, a North-South (West-East) warming gradient is found for summer (winter) along with a general increase in heavy precipitation and summer extreme temperatures. Tying the ensemble analysis to time periods with a prescribed global temperature change rather than fixed time periods allows for the identification of more robust regional patterns of temperature changes due to removal of some of the uncertainty related to the global models' climate sensitivity.

  • 459.
    Venäläinen, Ari
    et al.
    Finnish Meteorological Institute, Finland.
    Saku, Seppo
    Finnish Meteorological Institute, Finland.
    Jylhä, Kirsti
    Finnish Meteorological Institute, Finland.
    Nikulin, Grigory
    SMHI, Research Department, Climate research - Rossby Centre.
    Kjellström, Erik
    SMHI, Research Department, Climate research - Rossby Centre.
    Bärring, Lars
    SMHI, Research Department, Climate research - Rossby Centre.
    Climate extremes and safety of nuclear power plants: Extreme temperatures and enthalpy in Finland and Sweden in a changing climate.2009Report (Other academic)
  • 460. Voisin, Nathalie
    et al.
    Hamlet, Alan F.
    Graham, Phil
    SMHI, Research Department, Climate research - Rossby Centre.
    Pierce, David W.
    Barnett, Tim P.
    Lettenmaier, Dennis P.
    The role of climate forecasts in Western US power planning2006In: Journal of Applied Meteorology and Climatology, ISSN 1558-8424, E-ISSN 1558-8432, Vol. 45, no 5, p. 653-673Article in journal (Refereed)
    Abstract [en]

    The benefits of potential electric power transfers between the Pacific Northwest (PNW) and California ( CA) are evaluated using a linked set of hydrologic, reservoir, and power demand simulation models for the Columbia River and the Sacramento-San Joaquin reservoir systems. The models provide a framework for evaluating climate-related variations and long-range predictability of regional electric power demand, hydropower production, and the benefits of potential electric power transfers between the PNW and CA. The period of analysis is 1917-2002. The study results show that hydropower production and regional electric power demands in the PNW and CA are out of phase seasonally but that hydropower productions in the PNW and CA have strongly covaried on an annual basis in recent decades. Winter electric power demand and spring and annual hydropower production in the PNW are related to both El Nino-Southern Oscillation (ENSO) and the Pacific decadal oscillation (PDO) through variations in winter climate. Summer power demand in CA is related primarily to variations in the PDO in spring. Hydropower production in CA, despite recent covariation with the PNW, is not strongly related to ENSO variability overall. Primarily because of strong variations in supply in the PNW, potential hydropower transfers between the PNW and CA in spring and summer are shown to be correlated to ENSO and PDO, and the conditional probability distributions of these transfers are therefore predictable with long lead times. Such electric power transfers are estimated to have potential average annual benefits of $136 and $79 million for CA and the PNW, respectively, at the year-2000 regional demand level. These benefits are on average 11%-27% larger during cold ENSO/PDO events and are 16%-30% lower during warm ENSO/PDO events. Power transfers from the PNW to CA and hydropower production in CA are comparable in magnitude, on average.

  • 461. Walther, Alexander
    et al.
    Jeong, Jee-Hoon
    Nikulin, Grigory
    SMHI, Research Department, Climate research - Rossby Centre.
    Jones, Colin
    SMHI, Research Department, Climate research - Rossby Centre.
    Chen, Deliang
    Evaluation of the warm season diurnal cycle of precipitation over Sweden simulated by the Rossby Centre regional climate model RCA32013In: Atmospheric research, ISSN 0169-8095, E-ISSN 1873-2895, Vol. 119, p. 131-139Article in journal (Refereed)
    Abstract [en]

    This study examines the diurnal cycle of precipitation over Sweden for the warm season (April to September) both in hourly observational data and in simulations from the Rossby Centre regional climate model (RCA3). A series of parallel long-term simulations of RCA3 with different horizontal resolutions - 50, 25, 12, and 6 km - were analyzed to investigate the sensitivity of the model's horizontal resolution to the simulated diurnal cycle of precipitation. Overall, a clear distinction between an afternoon peak for inland stations and an early morning peak for stations along the Eastern coast is commonly found both in observation and model results. However, the diurnal cycle estimated from the model simulations show too early afternoon peaks with too large amplitude compared to the observation. Increasing horizontal model resolution tends to reduce this bias both in peak timing and amplitude, but this resolution effect seems not to be monotonic; this is clearly seen only when comparing coarser resolution results with the 6 km resolution result. As the resolution increases, the peak timing and amplitude of the diurnal cycle of resolved large-scale precipitation become more similar to the observed cycle of total precipitation while the contribution of subgrid scale convective precipitation to the total precipitation decreases. An increase in resolution also tends to reduce too much precipitation of relatively light intensity over inland compared to the observation, which may also contribute to the more realistic simulation of the afternoon peak in convective precipitation. (C) 2011 Elsevier B.V. All rights reserved.

  • 462.
    Wang, Shiyu
    et al.
    SMHI, Research Department, Climate research - Rossby Centre.
    Dieterich, Christian
    SMHI, Research Department, Oceanography.
    Doescher, Ralf
    SMHI, Research Department, Climate research - Rossby Centre.
    Höglund, Anders
    SMHI, Research Department, Oceanography.
    Hordoir, Robinson
    SMHI, Research Department, Oceanography.
    Meier, Markus
    SMHI, Research Department, Oceanography.
    Samuelsson, Patrick
    SMHI, Research Department, Climate research - Rossby Centre.
    Schimanke, Semjon
    SMHI, Research Department, Oceanography.
    Development and evaluation of a new regional coupled atmosphere-ocean model in the North Sea and Baltic Sea2015In: Tellus. Series A, Dynamic meteorology and oceanography, ISSN 0280-6495, E-ISSN 1600-0870, Vol. 67, article id 24284Article in journal (Refereed)
    Abstract [en]

    A new regional coupled model system for the North Sea and the Baltic Sea is developed, which is composed of the regional setup of ocean model NEMO, the Rossby Centre regional climate model RCA4, the sea ice model LIM3 and the river routing model CaMa-Flood. The performance of this coupled model system is assessed using a simulation forced with ERA-Interim reanalysis data at the lateral boundaries during the period 1979-2010. Compared to observations, this coupled model system can realistically simulate the present climate. Since the active coupling area covers the North Sea and Baltic Sea only, the impact of the ocean on the atmosphere over Europe is small. However, we found some local, statistically significant impacts on surface parameters like 2m air temperature and sea surface temperature (SST). A precipitation-SST correlation analysis indicates that both coupled and uncoupled models can reproduce the air-sea relationship reasonably well. However, the coupled simulation gives slightly better correlations even when all seasons are taken into account. The seasonal correlation analysis shows that the air-sea interaction has a strong seasonal dependence. Strongest discrepancies between the coupled and the uncoupled simulations occur during summer. Due to lack of air-sea interaction, in the Baltic Sea in the uncoupled atmosphere-standalone run the correlation between precipitation and SST is too small compared to observations, whereas the coupled run is more realistic. Further, the correlation analysis between heat flux components and SST tendency suggests that the coupled model has a stronger correlation. Our analyses show that this coupled model system is stable and suitable for different climate change studies.

  • 463. Wang, Zhan
    et al.
    Belusic, Danijel
    SMHI, Research Department, Climate research - Rossby Centre.
    Huang, Yi
    Siems, Steven T.
    Manton, Michael J.
    Understanding Orographic Effects on Surface Observations at Macquarie Island2016In: Journal of Applied Meteorology and Climatology, ISSN 1558-8424, E-ISSN 1558-8432, Vol. 55, no 11, p. 2377-2395Article in journal (Refereed)
  • 464.
    Wern, Lennart
    et al.
    SMHI, Core Services.
    Bärring, Lars
    SMHI, Research Department, Climate research - Rossby Centre.
    Sveriges vindklimat 1901-2008: Analys av trend i geostrofisk vind2009Report (Other academic)
    Abstract [sv]

    En studie har gjorts hur vinden har varierat i Sverige under perioden 1901 - 2008. Eftersom det saknas långa homogena mätserier av vindhastighet i Sverige har vi utgått från tryckmätningar och beräknatden s.k. geostrofiska vinden i elva trianglar som täcker Sverige. Eftersom bara tre observationer per dag (morgon, middag och kväll) har funnits att tillgå så kan det ha blåst mer mellan observationerna.Ett stort arbete har lagts ner på att kontrollera och rätta felaktiga observationer. Mellan åren 1951 och 2008 har varje observerat värde jämförts med ett interpolerat värde. Om skillnaden varit mer än 4 - 5 hPa har en karta analyserats för att kunna avgöra om det i databasen lagrade värdet varit korrekt. Kanske tusen tryckkartor har analyserats. Även två närliggande stationers observationer har jämförts till exempel Bromma och Observatoriekullen. Före 1951 har granskningsarbetet varit begränsat eftersom digitaliserade data saknas för fler stationer än de som ingår i denna undersökning.Förändringen av vindklimatet i elva trianglar som täcker huvuddelen av Sverige har studerats medhjälp av flera olika mått, bland annat:- Årets högsta vindhastighet- Årets medelvindhastighet- Antal fall på minst 25 m/s under året- Potentiell vindenergi under åretÅrets högsta geostrofiska vindhastighet har även jämförts med högsta havsvattenstånd och skogsskador.I det studerade materialet inträffade den absolut högsta geostrofiska vindhastigheten den 13 januari 1984 i den sydligaste triangeln Göteborg - Visby - Lund. Då beräknades den geostrofiska vindhastigheten till 66 m/s och vindriktningen var 235°.Denna undersökning visar bland annat att:- Årets högsta vindhastighet har ökat i fem trianglar och minskat i sex trianglar sedan 1951. Den sammanvägde trenden i Sverige visar på en svag ökning som inte är statistiskt signifikant.- Antal tillfällen per år då vindhastigheten varit minst 25 m/s har minskat i sju av de elva trianglarna sedan 1951.- Medelvindhastigheten har minskat i tio av de elva trianglarna sedan 1951. För fyra trianglar i norra Sverige är denna minskning statistiskt signifikant. Sammantaget för Sverige har medelvindhastigheten minskat med 4 %.- På samma sätt har den potentiella vindenergin minskat i dessa tio trianglar sedan 1951-talet. Minskningen är statistiskt signifikant i de fyra nordliga trianglarna. Sammantaget för Sverige har energin minskat med 7 %.

  • 465. Westra, S.
    et al.
    Fowler, H. J.
    Evans, J. P.
    Alexander, L. V.
    Berg, Peter
    SMHI, Research Department, Climate research - Rossby Centre.
    Johnson, F.
    Kendon, E. J.
    Lenderink, G.
    Roberts, N. M.
    Future changes to the intensity and frequency of short-duration extreme rainfall2014In: Reviews of geophysics, ISSN 8755-1209, E-ISSN 1944-9208, Vol. 52, no 3, p. 522-555Article, review/survey (Refereed)
    Abstract [en]

    Evidence that extreme rainfall intensity is increasing at the global scale has strengthened considerably in recent years. Research now indicates that the greatest increases are likely to occur in short-duration storms lasting less than a day, potentially leading to an increase in the magnitude and frequency of flash floods. This review examines the evidence for subdaily extreme rainfall intensification due to anthropogenic climate change and describes our current physical understanding of the association between subdaily extreme rainfall intensity and atmospheric temperature. We also examine the nature, quality, and quantity of information needed to allow society to adapt successfully to predicted future changes, and discuss the roles of observational and modeling studies in helping us to better understand the physical processes that can influence subdaily extreme rainfall characteristics. We conclude by describing the types of research required to produce a more thorough understanding of the relationships between local-scale thermodynamic effects, large-scale atmospheric circulation, and subdaily extreme rainfall intensity.

  • 466.
    Wetterhall, Fredrik
    et al.
    SMHI, Research Department, Hydrology.
    Graham, Phil
    SMHI, Research Department, Climate research - Rossby Centre.
    Andreasson, Johan
    SMHI, Professional Services.
    Rosberg, Jörgen
    SMHI, Research Department, Hydrology.
    Yang, Wei
    SMHI, Research Department, Hydrology.
    Using ensemble climate projections to assess probabilistic hydrological change in the Nordic region2011In: Natural hazards and earth system sciences, ISSN 1561-8633, E-ISSN 1684-9981, Vol. 11, no 8, p. 2295-2306Article in journal (Refereed)
    Abstract [en]

    Assessing hydrological effects of global climate change at local scales is important for evaluating future hazards to society. However, applying climate model projections to local impact models can be difficult as outcomes can vary considerably between different climate models, and including results from many models is demanding. This study combines multiple climate model outputs with hydrological impact modelling through the use of response surfaces. Response surfaces represent the sensitivity of the impact model to incremental changes in climate variables and show probabilies for reaching a priori determined thresholds. Response surfaces were calculated using the HBV hydrological model for three basins in Sweden. An ensemble of future climate projections was then superimposed onto each response surface, producing a probability estimate for exceeding the threshold being evaluated. Site specific impacts thresholds were used where applicable. Probabilistic trends for future change in hazards or potential can be shown and evaluated. It is particularly useful for visualising the range of probable outcomes from climate models and can easily be updated with new results as they are made available.

  • 467. White, Christopher J.
    et al.
    Carlsen, Henrik
    Robertson, Andrew W.
    Klein, Richard J. T.
    Lazo, Jeffrey K.
    Kumar, Arun
    Vitart, Frederic
    de Perez, Erin Coughlan
    Ray, Andrea J.
    Murray, Virginia
    Bharwani, Sukaina
    MacLeod, Dave
    James, Rachel
    Fleming, Lora
    Morse, Andrew P.
    Eggen, Bernd
    Graham, Richard
    Kjellström, Erik
    SMHI, Research Department, Climate research - Rossby Centre.
    Becker, Emily
    Pegion, Kathleen V.
    Holbrook, Neil J.
    McEvoy, Darryn
    Depledge, Michael
    Perkins-Kirkpatrick, Sarah
    Brown, Timothy J.
    Street, Roger
    Jones, Lindsey
    Remenyi, Tomas A.
    Hodgson-Johnston, Indi
    Buontempo, Carlo
    Lamb, Rob
    Meinke, Holger
    Arheimer, Berit
    SMHI, Research Department, Hydrology.
    Zebiak, Stephen E.
    Potential applications of subseasonal-to-seasonal (S2S) predictions2017In: Meteorological Applications, ISSN 1350-4827, E-ISSN 1469-8080, Vol. 24, no 3, p. 315-325Article in journal (Refereed)
  • 468. Wibig, Joanna
    et al.
    Maraun, Douglas
    Benestad, Rasmus
    Kjellström, Erik
    SMHI, Research Department, Climate research - Rossby Centre.
    Lorenz, Philip
    Christensen, Ole Bossing
    Projected Change-Models and Methodology2015Chapter in book (Other academic)
    Abstract [en]

    General (global) circulation models (GCMs) are a useful tool for studying how climate may change in the future. Although GCMs have high temporal resolution, their spatial resolution is low. To simulate the future climate of the Baltic Sea region, it is necessary to downscale GCM data. This chapter describes the two conceptually different ways of downscaling: regional climate models (RCMs) nested in GCMs and using empirical and/or statistical relations between large-scale variables from GCMs and small-scale variables. There are many uncertainties in climate models, including uncertainty related to future land use and atmospheric greenhouse gas concentrations, limits on the amount of input data and their accuracy, and the chaotic nature of weather. The skill of methods for describing regional climate futures is also limited by natural climate variability. For the Baltic Sea area, the lack of an oceanic component in RCMs and poor representation of forcing by aerosols and changes in land use are major limitations.

  • 469.
    Wilcke, Renate
    et al.
    SMHI, Research Department, Climate research - Rossby Centre.
    Bärring, Lars
    SMHI, Research Department, Climate research - Rossby Centre.
    Selecting regional climate scenarios for impact modelling studies2016In: Environmental Modelling & Software, ISSN 1364-8152, E-ISSN 1873-6726, Vol. 78, p. 191-201Article in journal (Refereed)
    Abstract [en]

    In climate change research ensembles of climate simulations are produced in an attempt to cover the uncertainty in future projections. Many climate change impact studies face difficulties using the full number of simulations available, and therefore often only subsets are used. Until now such subsets were chosen based on their representation of temperature change or by accessibility of the simulations. By using more specific information about the needs of the impact study as guidance for the clustering of simulations, the subset fits the purpose of climate change impact research more appropriately. Here, the sensitivity of such a procedure is explored, particularly with regard to the use of different climate variables, seasons, and regions in Europe. While temperature dominates the clustering, the resulting selection is influenced by all variables, leading to the conclusion that different subsets fit different impact studies best. (C) 2016 The Authors. Published by Elsevier Ltd.

  • 470.
    Willén, Ulrika
    SMHI, Research Department, Climate research - Rossby Centre.
    Comparison of Model and Cloud Radar Derived Cloud Vertical Structure and Overlap for the BALTEX BRIDGE Campaign.2004In: Fourth Study Conference on BALTEX: Conference Proceedings / [ed] Hans-Jörg Isemer, 2004, p. 18-Conference paper (Other academic)
  • 471.
    Willén, Ulrika
    SMHI, Research Department, Climate research - Rossby Centre.
    Comparison of modeled and radar measured cloud fraction and overlap2005In: Extended abstracts of a WMO/WCRP-sponsored Regional-Scale Climate Modelling Workshop [Elektronisk resurs] : high-resolution climate modelling : assessment, added value and applications, Lund, Sweden, 29 March-2 April 2004 / [ed] Lars Bärring & René Laprise, Lund: Department of Physical Geography & Ecosystems Analysis, Lund University , 2005, p. 128-Conference paper (Other academic)
  • 472.
    Willén, Ulrika
    SMHI, Research Department, Climate research - Rossby Centre.
    Preliminary use of CM-SAF cloud and radiation products for evaluation of regional climate simulations: Visiting Scientist Report Climate Monitoring SAF (CM-SAF)2008Report (Other academic)
    Abstract [en]

    We have compared monthly mean cloud and radiation fields from the EUMETSAT Climate Monitoring SAF (CM-SAF, http://www.cmsaf.eu) data base with the clouds and radiation simulated by the Rossby Centre regional climate model (RCA) and by the European Centre Medium range Weather Forecast model (ECMWF) over Europe and North Africa for the time period January 2005 to December 2006.ECMWF and RCA overestimate the cloud fraction by 20% over snow covered regions in the north east of Europe and overestimate the surface downwelling longwave radiation (SDL) by 20-40W/m2 and surface outgoing longwave radiation by 10-30W/m2. The RCA-simulated clouds have too much cloud water in northern Europe in summer and in autumn and they therefore reflect too much shortwave radiation at the TOA (TRS) and this also leads to an underestimation of the incoming shortwave radiation (SIS) at the surface. Over most of Europe and over sea ECMWF (all year) and RCA (in winter-spring) underestimate the cloud fraction which could explain a corresponding underestimate of TRS, overestimate of SIS and underestimate of SDL. The satellites overestimate cloud cover over sea due to problems in the treatment of sub-pixel cloudiness and therefore the models underestimates are larger over sea. Mainly RCA but also ECMWF overestimate cloud fraction on top of mountains and underestimate it along mountain ranges and have corresponding differences in the TOA and surface radiation fluxes compared to the CM-SAF data.Over North Africa RCA underestimates TRS by -11W/m2 and overestimates the TOA emitted thermal radiation (TET) by 8W/m2. ECMWF underestimates TRS by -28W/m2 and overestimates TET by 14W/m2. These errors are similar to what has been found for many other global models and are attributed to clear sky errors either due to too high surface temperatures, errors in emissivity, albedo or lack of aerosols. Adding clear and cloudy skies radiation fluxes to the CM-SAF data base would help us to understand the reasons for ECMWF and RCA errors. The polar orbiting satellite retrieval for 2005-2006 erroneously overestimated cloud fraction over North Africa, which also affects the CM-SAF derived surface radiation fluxes.

  • 473.
    Willén, Ulrika
    et al.
    SMHI, Research Department, Climate research - Rossby Centre.
    Crewell, S.
    Comparison of model and cloud radar derived cloud vertical structure and overlap.2004In: 14th International Conference on Clouds and Precipitation(ICCP), 2004, p. 1434-1437Conference paper (Other academic)
  • 474.
    Willén, Ulrika
    et al.
    SMHI, Research Department, Climate research - Rossby Centre.
    Crewell, S
    Baltink, H K
    Sievers, O
    Assessing model predicted vertical cloud structure and cloud overlap with radar and lidar ceilometer observations for the Baltex Bridge Campaign of CLIWA-NET2005In: Atmospheric research, ISSN 0169-8095, E-ISSN 1873-2895, Vol. 75, no 3, p. 227-255Article in journal (Refereed)
    Abstract [en]

    The cloud vertical distribution and overlap of four large-scale models operating at different horizontal and vertical resolutions have been assessed using radar and lidar observations from the Baltex Bridge Campaign of CLIWA-NET. The models range from the global European Centre for Medium range Weather Forecast (ECMWF) model, to the Regional Atmospheric Climate Model (RACMO) and the Rossby Centre Atmospheric (RCA) regional climate model, to the non-hydrostatic meso-scale Lokal Model (LM). Different time averaging periods for the radar data were used to estimate the uncertainty of the point-to-space transformations of the observations. Relative to the observations, all models underestimated the height of the lowest cloud base. Clouds occurred more frequently in the models but with smaller cloud fractions below 7 km. The findings confirm previous cloud radar studies which found that models overestimate cloud fractions above 7 km. Radar-observed clouds were often thinner than the model vertical resolutions, which can have serious implications on model cloud overlap and radiation fluxes. The radar-derived cloud overlap matrix, which takes into account the overlap of all vertical layers, was found to be close to maximum-random overlap. Using random overlap for vertically continuous clouds with vertical gradients in cloud fraction larger than 40-50% per kilometre gave the best fit to the data. The gradient approach could be improved by making it resolution- and cloud system-dependent. Previous cloud radar overlap studies have considered the overlap of two cloud layers as a function of maximum and random overlap. Here, it was found that the two-layer overlap could be modelled by a mixture of maximum and minimum overlap. (c) 2005 Elsevier B.V. All rights reserved.

  • 475.
    Willén, Ulrika
    et al.
    SMHI, Research Department, Climate research - Rossby Centre.
    Jones, Colin
    SMHI, Research Department, Climate research - Rossby Centre.
    Baltink, Henk Klein
    Quante, Markus
    COMPARISON OF MODEL AND CLOUD RADAR DERIVED CLOUD OVERLAP2002Conference paper (Other academic)
  • 476. Wormbs, N.
    et al.
    Nilsson, A.E.
    Doescher, Ralf
    SMHI, Research Department, Climate research - Rossby Centre.
    Sörlin, S.
    The History of Emerging Arctic Climate Modelling, poster presented at the IPY final conference in Oslo2010Conference paper (Other academic)
  • 477. Wramneby, Anna
    et al.
    Smith, Benjamin
    Samuelsson, Patrick
    SMHI, Research Department, Climate research - Rossby Centre.
    Hot spots of vegetation-climate feedbacks under future greenhouse forcing in Europe2010In: Journal of Geophysical Research - Atmospheres, ISSN 2169-897X, E-ISSN 2169-8996, Vol. 115, article id D21119Article in journal (Refereed)
    Abstract [en]

    We performed simulations of future biophysical vegetation-climate feedbacks with a regional Earth System Model, RCA-GUESS, interactively coupling a regional climate model and a process-based model of vegetation dynamics and biogeochemistry. Simulated variations in leaf area index and in the relative coverage of evergreen forest, deciduous forest, and open land vegetation in response to simulated climate influence atmospheric state via variations in albedo, surface roughness, and the partitioning of the land-atmosphere heat flux into latent and sensible components. The model was applied on a similar to 50 x 50 km grid over Europe under a future climate scenario. Three potential "hot spots" of vegetation-climate feedbacks could be identified. In the Scandinavian Mountains, reduced albedo resulting from the snow-masking effect of forest expansion enhanced the winter warming trend. In central Europe, the stimulation of photosynthesis and plant growth by "CO2 fertilization" mitigated warming, through a negative evapotranspiration feedback associated with increased vegetation cover and leaf area index. In southern Europe, increased summer dryness restricted plant growth and survival, causing a positive warming feedback through reduced evapotranspiration. Our results suggest that vegetation-climate feedbacks over the European study area will be rather modest compared to the radiative forcing of increased global CO2 concentrations but may modify warming projections locally, regionally, and seasonally, compared with results from traditional "off-line" regional climate models lacking a representation of the relevant feedback mechanisms.

  • 478. Wu, Minchao
    et al.
    Schurgers, Guy
    Rummukainen, Markku
    SMHI, Core Services.
    Smith, Benjamin
    Samuelsson, Patrick
    SMHI, Research Department, Climate research - Rossby Centre.
    Jansson, Christer
    Siltberg, Joe
    May, Wilhelm
    Vegetation-climate feedbacks modulate rainfall patterns in Africa under future climate change2016In: Earth System Dynamics, ISSN 2190-4979, E-ISSN 2190-4987, Vol. 7, no 3, p. 627-647Article in journal (Refereed)
  • 479.
    Wyser, Klaus
    et al.
    SMHI, Research Department, Climate research - Rossby Centre.
    Jones, Colin
    SMHI, Research Department, Climate research - Rossby Centre.
    Modeled and observed clouds during Surface Heat Budget of the Arctic Ocean (SHEBA)2005In: Journal of Geophysical Research - Atmospheres, ISSN 2169-897X, E-ISSN 2169-8996, Vol. 110, no D9, article id D09207Article in journal (Refereed)
    Abstract [en]

    [1] Observed monthly mean cloud cover from the SHEBA site is found to differ by a substantial amount during winter depending on cloud observing instrument. This makes it difficult for climate modelers to evaluate modeled clouds and improve parameterizations. Many instruments and human observers cannot properly detect the thinnest clouds and count them as clear sky instead, resulting in too low cloud cover. To study the impact from the difficulties in the detection of thin clouds, we compute cloud cover in our model with a filter that removes the thinnest clouds. Optical thickness is used as a proxy to identify thin clouds as we are mainly interested in the impact of clouds on radiation. With the results from a regional climate model simulation of the Arctic, we can reproduce the large variability in wintertime cloud cover between instruments when assuming different cloud detection thresholds. During winter a large fraction of all clouds are optically thin, which causes the large sensitivity to filtering by optical thickness. During summer, most clouds are far above the optical thickness threshold and filtering has no effect. A fair comparison between observed and modeled cloud cover should account for thin clouds that may be present in models but absent in the observational data set. Difficulties with the proper identification of clouds and clear sky also has an effect on cloud radiative forcing. The derived clear-sky longwave flux at the surface can vary by some W m(-2) depending on the lower limit for the optical thickness of clouds. This impacts on the "observed'' LW cloud radiative forcing and suggests great care is needed in using satellite-derived cloud radiative forcing for model development.

  • 480.
    Wyser, Klaus
    et al.
    SMHI, Research Department, Climate research - Rossby Centre.
    Jones, Colin
    SMHI, Research Department, Climate research - Rossby Centre.
    Du, P.
    Girard, E.
    Willen, Ulrika
    SMHI, Research Department, Climate research - Rossby Centre.
    Cassano, J.
    Christensen, J. H.
    Curry, J. A.
    Dethloff, K.
    Haugen, J. -E
    Jacob, D.
    Koltzow, M.
    Laprise, R.
    Lynch, A.
    Pfeifer, S.
    Rinke, A.
    Serreze, M.
    Shaw, M. J.
    Tjernstrom, M.
    Zagar, M.
    An evaluation of Arctic cloud and radiation processes during the SHEBA year: simulation results from eight Arctic regional climate models2008In: Climate Dynamics, ISSN 0930-7575, E-ISSN 1432-0894, Vol. 30, no 2-3, p. 203-223Article in journal (Refereed)
    Abstract [en]

    Eight atmospheric regional climate models (RCMs) were run for the period September 1997 to October 1998 over the western Arctic Ocean. This period was coincident with the observational campaign of the Surface Heat Budget of the Arctic Ocean (SHEBA) project. The RCMs shared common domains, centred on the SHEBA observation camp, along with a common model horizontal resolution, but differed in their vertical structure and physical parameterizations. All RCMs used the same lateral and surface boundary conditions. Surface downwelling solar and terrestrial radiation, surface albedo, vertically integrated water vapour, liquid water path and cloud cover from each model are evaluated against the SHEBA observation data. Downwelling surface radiation, vertically integrated water vapour and liquid water path are reasonably well simulated at monthly and daily timescales in the model ensemble mean, but with considerable differences among individual models. Simulated surface albedos are relatively accurate in the winter season, but become increasingly inaccurate and variable in the melt season, thereby compromising the net surface radiation budget. Simulated cloud cover is more or less uncorrelated with observed values at the daily timescale. Even for monthly averages, many models do not reproduce the annual cycle correctly. The inter-model spread of simulated cloud-cover is very large, with no model appearing systematically superior. Analysis of the co-variability of terms controlling the surface radiation budget reveal some of the key processes requiring improved treatment in Arctic RCMs. Improvements in the parameterization of cloud amounts and surface albedo are most urgently needed to improve the overall performance of RCMs in the Arctic.

  • 481.
    Wyser, Klaus
    et al.
    SMHI, Research Department, Climate research - Rossby Centre.
    Jones, Colin
    SMHI, Research Department, Climate research - Rossby Centre.
    Willén, Ulrika
    SMHI, Research Department, Climate research - Rossby Centre.
    Modelling clouds and radiation in the Arctic2005In: Extended abstracts of a WMO/WCRP-sponsored Regional-Scale Climate Modelling Workshop [Elektronisk resurs] : high-resolution climate modelling : assessment, added value and applications / [ed] Lars Bärring & René Laprise, Lund: Department of Physical Geography & Ecosystems Analysis, Lund University , 2005, p. 128-Conference paper (Other academic)
  • 482.
    Wyser, Klaus
    et al.
    SMHI, Research Department, Climate research - Rossby Centre.
    Jones, Colin
    SMHI, Research Department, Climate research - Rossby Centre.
    Willén, Ulrika
    SMHI, Research Department, Climate research - Rossby Centre.
    Modelling clouds and radiation in the ARctic.2004In: 14th International conference on clouds and precipitation, 2004, p. 1442-1445Conference paper (Other academic)
  • 483.
    Wyser, Klaus
    et al.
    SMHI, Research Department, Climate research - Rossby Centre.
    Rummukainen, Markku
    SMHI, Research Department, Climate research - Rossby Centre.
    Strandberg, Gustav
    SMHI, Research Department, Climate research - Rossby Centre.
    Nordic regionalisation of a greenhouse-gas stabilisation scenario2006Report (Other academic)
    Abstract [en]

    The impact of a CO2 stabilisation on the Swedish climate is investigated with the regional climate model RCA3 driven by boundary conditions obtained from a global coupled climate system model (CCSM3). The global model has been forced with observed greenhouse gas concentrations from pre-industrial conditions until today’s, and with an idealised further increase until the stabilisation level is reached. After stabilisation the model integration continues for another 150+ years in order to follow the delayed response of the climate system over a period of time.Results from the global and regional climate model are compared against observations and ECMWF reanalysis for 1961-1990. For this period, the global model is found to be too cold over Europe and with a zonal flow from the North Atlantic towards Europe that is too strong. The climate of the driving global model controls the climate of the regional model and the same deviations from one are thus inherited by the other. We therefore analyse the relative climate changes differences, or ratios, of climate variables between future's and today's climate.Compared to pre-industrial conditions, the global mean temperature changes by about 1.5oC as a result of the stabilisation at 450 ppmv equivalent CO2. Averaged over Europe, the temperature change is slightly larger, and it is even larger for Sweden and Northern Europe. Annual mean precipitation for Europe is unaffected, but Sweden receives more precipitation under higher CO2 levels. The inter-annual and decadal variability of annual mean temperature and precipitation does not change with any significant degree.The changes in temperature and precipitation are not evenly distributed with the season: the largest warming and increased precipitation in Northern Europe occurs during winter months while the summer climate remains more or less unchanged. The opposite is true for the Mediterranean region where the precipitation decreases mostly during summer. This also implies higher summer temperatures, but changes in winter are smaller. No substantial change in the wind climate over Europe is found.

  • 484. Xavier, Prince K.
    et al.
    Petch, Jon C.
    Klingaman, Nicholas P.
    Woolnough, Steve J.
    Jiang, Xianan
    Waliser, Duane E.
    Caian, Mihaela
    SMHI, Research Department, Climate research - Rossby Centre.
    Cole, Jason
    Hagos, Samson M.
    Hannay, Cecile
    Kim, Daehyun
    Miyakawa, Tomoki
    Pritchard, Michael S.
    Roehrig, Romain
    Shindo, Eiki
    Vitart, Frederic
    Wang, Hailan
    Vertical structure and physical processes of the Madden-Julian Oscillation: Biases and uncertainties at short range2015In: Journal of Geophysical Research - Atmospheres, ISSN 2169-897X, E-ISSN 2169-8996, Vol. 120, no 10, p. 4749-4763Article in journal (Refereed)
    Abstract [en]

    An analysis of diabatic heating and moistening processes from 12 to 36h lead time forecasts from 12 Global Circulation Models are presented as part of the Vertical structure and physical processes of the Madden-Julian Oscillation (MJO) project. A lead time of 12-36h is chosen to constrain the large-scale dynamics and thermodynamics to be close to observations while avoiding being too close to the initial spin-up of the models as they adjust to being driven from the Years of Tropical Convection (YOTC) analysis. A comparison of the vertical velocity and rainfall with the observations and YOTC analysis suggests that the phases of convection associated with the MJO are constrained in most models at this lead time although the rainfall in the suppressed phase is typically overestimated. Although the large-scale dynamics is reasonably constrained, moistening and heating profiles have large intermodel spread. In particular, there are large spreads in convective heating and moistening at midlevels during the transition to active convection. Radiative heating and cloud parameters have the largest relative spread across models at upper levels during the active phase. A detailed analysis of time step behavior shows that some models show strong intermittency in rainfall and differences in the precipitation and dynamics relationship between models. The wealth of model outputs archived during this project is a very valuable resource for model developers beyond the study of the MJO. In addition, the findings of this study can inform the design of process model experiments, and inform the priorities for field experiments and future observing systems.

  • 485.
    Yang, Wei
    et al.
    SMHI, Research Department, Hydrology.
    Andreasson, Johan
    SMHI, Professional Services.
    Graham, Phil
    SMHI, Research Department, Climate research - Rossby Centre.
    Olsson, Jonas
    SMHI, Research Department, Hydrology.
    Rosberg, Jörgen
    SMHI, Research Department, Hydrology.
    Wetterhall, Fredrik
    SMHI, Research Department, Hydrology.
    Distribution-based scaling to improve usability of regional climate model projections for hydrological climate change impacts studies2010In: HYDROLOGY RESEARCH, ISSN 1998-9563, Vol. 41, no 3-4, p. 211-229Article in journal (Refereed)
    Abstract [en]

    As climate change could have considerable influence on hydrology and corresponding water management, appropriate climate change inputs should be used for assessing future impacts. Although the performance of regional climate models (RCMs) has improved over time, systematic model biases still constrain the direct use of RCM output for hydrological impact studies. To address this, a distribution-based scaling (DBS) approach was developed that adjusts precipitation and temperature from RCMs to better reflect observations. Statistical properties, such as daily mean, standard deviation, distribution and frequency of precipitation days, were much improved for control periods compared to direct RCM output. DBS-adjusted precipitation and temperature from two IPCC Special Report on Emissions Scenarios (SRESA1B) transient climate projections were used as inputs to the HBV hydrological model for several river basins in Sweden for the period 1961-2100. Hydrological results using DBS were compared to results with the widely-used delta change (DC) approach for impact studies. The general signal of a warmer and wetter climate was obtained using both approaches, but use of DBS identified differences between the two projections that were not seen with DC. The DBS approach is thought to better preserve the future variability produced by the RCM, improving usability for climate change impact studies.

  • 486. Zadra, Ayrton
    et al.
    Caya, Daniel
    Coté, Jean
    Dugas, Bernard
    Jones, Colin
    SMHI, Research Department, Climate research - Rossby Centre.
    Laprise, René
    Winger, Katja
    Caron, Louis-Philippe
    The next Canadian Regional Climate Model.2008In: Physics in Canada, Vol. 64, no 2Article in journal (Refereed)
  • 487. Zampieri, M.
    et al.
    Giorgi, F.
    Lionello, P.
    Nikulin, Grigory
    SMHI, Research Department, Climate research - Rossby Centre.
    Regional climate change in the Northern Adriatic2012In: Physics and Chemistry of the Earth, ISSN 1474-7065, E-ISSN 1873-5193, Vol. 40-41, p. 32-46Article in journal (Refereed)
    Abstract [en]

    An analysis of the climate change signal for seasonal temperature and precipitation over the Northern Adriatic region is presented here. We collected 43 regional climate simulations covering the target area, including experiments produced in the context of the PRUDENCE and ENSEMBLES projects, and additional experiments produced by the Swedish Meteorological and Hydrological Institute. The ability of the models to simulate the present climate in terms of mean and interannual variability is discussed and the insufficient reproduction of some features, such as the intensity of summer precipitation, are shown. The contribution to the variance associated with the intermodel spread is computed. The changes of mean and interannual variability are analyzed for the period 2071-2100 in the PRUDENCE runs (A2 scenario) and the periods 2021-2050 and 2071-2100 (A1B scenario) for the other runs. Ensemble results show a major warming at the end of the 21st century. Warming will be larger in the A2 scenario (about 5.5 K in summer and 4 K in winter) than in the A1B. Precipitation is projected to increase in winter and decrease in summer by 20% (+0.5 mm/day and -1 mm/day over the Alps, respectively). The climate change signal for scenario A1B in the period 2021-2050 is significant for temperature, but not yet for precipitation. In summer, interannual variability is projected to increase for temperature and for precipitation. Winter interannual variability change is different among scenarios. A reduction of precipitation is found for A2, while for A1B a reduction of temperature interannual variability is observed. (C) 2010 Elsevier Ltd. All rights reserved.

  • 488. Zarekarizi, Mahkameh
    et al.
    Rana, Arun
    SMHI, Research Department, Climate research - Rossby Centre.
    Moradkhani, Hamid
    Precipitation extremes and their relation to climatic indices in the Pacific Northwest USA2018In: Climate Dynamics, ISSN 0930-7575, E-ISSN 1432-0894, Vol. 50, no 11-12, p. 4519-4537Article in journal (Refereed)
  • 489. Zhang, W.
    et al.
    Jansson, Christer
    SMHI, Research Department, Climate research - Rossby Centre.
    Miller, P. A.
    Smith, B.
    Samuelsson, Patrick
    SMHI, Research Department, Climate research - Rossby Centre.
    Biogeophysical feedbacks enhance the Arctic terrestrial carbon sink in regional Earth system dynamics2014In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 11, no 19, p. 5503-5519Article in journal (Refereed)
    Abstract [en]

    Continued warming of the Arctic will likely accelerate terrestrial carbon (C) cycling by increasing both uptake and release of C. Yet, there are still large uncertainties in modelling Arctic terrestrial ecosystems as a source or sink of C. Most modelling studies assessing or projecting the future fate of C exchange with the atmosphere are based on either stand-alone process-based models or coupled climate-C cycle general circulation models, and often disregard biogeophysical feedbacks of land-surface changes to the atmosphere. To understand how biogeophysical feedbacks might impact on both climate and the C budget in Arctic terrestrial ecosystems, we apply the regional Earth system model RCA-GUESS over the CORDEX-Arctic domain. The model is forced with lateral boundary conditions from an EC-Earth CMIP5 climate projection under the representative concentration pathway (RCP) 8.5 scenario. We perform two simulations, with or without interactive vegetation dynamics respectively, to assess the impacts of biogeophysical feedbacks. Both simulations indicate that Arctic terrestrial ecosystems will continue to sequester C with an increased uptake rate until the 2060-2070s, after which the C budget will return to a weak C sink as increased soil respiration and biomass burning outpaces increased net primary productivity. The additional C sinks arising from biogeophysical feedbacks are approximately 8.5 Gt C, accounting for 22% of the total C sinks, of which 83.5% are located in areas of extant Arctic tundra. Two opposing feedback mechanisms, mediated by albedo and evapotranspiration changes respectively, contribute to this response. The albedo feedback dominates in the winter and spring seasons, amplifying the near-surface warming by up to 1.35 degrees C in spring, while the evapotranspiration feedback dominates in the summer months, and leads to a cooling of up to 0.81 degrees C. Such feedbacks stimulate vegetation growth due to an earlier onset of the growing season, leading to compositional changes in woody plants and vegetation redistribution.

  • 490. Zhang, W.
    et al.
    Miller, P. A.
    Jansson, C.
    Samuelsson, Patrick
    SMHI, Research Department, Climate research - Rossby Centre.
    Mao, J.
    Smith, B.
    Self-Amplifying Feedbacks Accelerate Greening and Warming of the Arctic2018In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 45, no 14, p. 7102-7111Article in journal (Refereed)
  • 491. Zhang, Wenxin
    et al.
    Miller, Paul A.
    Smith, Benjamin
    Wania, Rita
    Koenigk, Torben
    SMHI, Research Department, Climate research - Rossby Centre.
    Doescher, Ralf
    SMHI, Research Department, Climate research - Rossby Centre.
    Tundra shrubification and tree-line advance amplify arctic climate warming: results from an individual-based dynamic vegetation model2013In: Environmental Research Letters, ISSN 1748-9326, E-ISSN 1748-9326, Vol. 8, no 3, article id 034023Article in journal (Refereed)
    Abstract [en]

    One major challenge to the improvement of regional climate scenarios for the northern high latitudes is to understand land surface feedbacks associated with vegetation shifts and ecosystem biogeochemical cycling. We employed a customized, Arctic version of the individual-based dynamic vegetation model LPJ-GUESS to simulate the dynamics of upland and wetland ecosystems under a regional climate model-downscaled future climate projection for the Arctic and Subarctic. The simulated vegetation distribution (1961-1990) agreed well with a composite map of actual arctic vegetation. In the future (2051-2080), a poleward advance of the forest-tundra boundary, an expansion of tall shrub tundra, and a dominance shift from deciduous to evergreen boreal conifer forest over northern Eurasia were simulated. Ecosystems continued to sink carbon for the next few decades, although the size of these sinks diminished by the late 21st century. Hot spots of increased CH4 emission were identified in the peatlands near Hudson Bay and western Siberia. In terms of their net impact on regional climate forcing, positive feedbacks associated with the negative effects of tree-line, shrub cover and forest phenology changes on snow-season albedo, as well as the larger sources of CH4, may potentially dominate over negative feedbacks due to increased carbon sequestration and increased latent heat flux.

78910 451 - 491 of 491
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.7
|