Change search
Refine search result
6789101112 401 - 450 of 1375
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 401.
    Fitch, Anna
    SMHI, Research Department, Climate research - Rossby Centre.
    Notes on using the mesoscale wind farm parameterization of Fitch et al. (2012) in WRF2016In: Wind Energy, ISSN 1095-4244, E-ISSN 1099-1824, Vol. 19, no 9, p. 1757-1758Article in journal (Refereed)
  • 402. Gutowski, William J., Jr.
    et al.
    Giorgi, Filippo
    Timbal, Bertrand
    Frigon, Anne
    Jacob, Daniela
    Kang, Hyun-Suk
    Raghavan, Krishnan
    Lee, Boram
    Lennard, Christopher
    Nikulin, Grigory
    SMHI, Research Department, Climate research - Rossby Centre.
    O'Rourke, Eleanor
    Rixen, Michel
    Solman, Silvina
    Stephenson, Tannecia
    Tangang, Fredolin
    WCRP COordinated Regional Downscaling EXperiment (CORDEX): a diagnostic MIP for CMIP62016In: Geoscientific Model Development, ISSN 1991-959X, E-ISSN 1991-9603, Vol. 9, no 11, p. 4087-4095Article in journal (Refereed)
  • 403. Soares, Joana
    et al.
    Sofiev, Mikhail
    Geels, Camilla
    Christensen, Jens H.
    Andersson, Camilla
    SMHI, Research Department, Air quality.
    Tsyro, Svetlana
    Langner, Joakim
    SMHI, Research Department, Air quality.
    Impact of climate change on the production and transport of sea salt aerosol on European seas2016In: Atmospheric Chemistry And Physics, ISSN 1680-7316, E-ISSN 1680-7324, Vol. 16, no 20, p. 13081-13104Article in journal (Refereed)
  • 404. Fredriksson, S. T.
    et al.
    Arneborg, Lars
    SMHI, Research Department, Oceanography.
    Nilsson, H.
    Handler, R. A.
    Surface shear stress dependence of gas transfer velocity parameterizations using DNS2016In: Journal of Geophysical Research - Oceans, ISSN 2169-9275, E-ISSN 2169-9291, Vol. 121, no 10, p. 7369-7389Article in journal (Refereed)
  • 405. Baranizadeh, Elham
    et al.
    Murphy, Benjamin N.
    Julin, Jan
    Falahat, Saeed
    SMHI, Core Services.
    Reddington, Carly L.
    Arola, Antti
    Ahlm, Lars
    Mikkonen, Santtu
    Fountoukis, Christos
    Patoulias, David
    Minikin, Andreas
    Hamburger, Thomas
    Laaksonen, Ari
    Pandis, Spyros N.
    Vehkamaki, Hanna
    Lehtinen, Kari E. J.
    Riipinen, Ilona
    Implementation of state-of-the-art ternary new-particle formation scheme to the regional chemical transport model PMCAMx-UF in Europe2016In: Geoscientific Model Development, ISSN 1991-959X, E-ISSN 1991-9603, Vol. 9, no 8, p. 2741-2754Article in journal (Refereed)
  • 406. Watson, Laura
    et al.
    Lacressonniere, Gwendoline
    Gauss, Michael
    Engardt, Magnuz
    SMHI, Research Department, Air quality.
    Andersson, Camilla
    SMHI, Research Department, Air quality.
    Josse, Beatrice
    Marecal, Virginie
    Nyiri, Agnes
    Sobolowski, Stefan
    Siour, Guillaume
    Szopa, Sophie
    Vautard, Robert
    Impact of emissions and+2 degrees C climate change upon future ozone and nitrogen dioxide over Europe2016In: Atmospheric Environment, ISSN 1352-2310, E-ISSN 1873-2844, Vol. 142, p. 271-285Article in journal (Refereed)
  • 407.
    Amorim, Jorge Humberto
    et al.
    SMHI, Research Department, Air quality.
    Valente, J.
    Cascao, P.
    Ribeiro, L. M.
    Viegas, D. X.
    Ottmar, R.
    Miranda, A. I.
    Near-source grid-based measurement of CO and PM2.5 concentration during a full-scale fire experiment in southern European shrubland2016In: Atmospheric Environment, ISSN 1352-2310, E-ISSN 1873-2844, Vol. 145, p. 19-28Article in journal (Refereed)
  • 408. Casanueva, A.
    et al.
    Kotlarski, S.
    Herrera, S.
    Fernandez, J.
    Gutierrez, J. M.
    Boberg, F.
    Colette, A.
    Christensen, O. B.
    Goergen, K.
    Jacob, D.
    Keuler, K.
    Nikulin, Grigory
    SMHI, Research Department, Climate research - Rossby Centre.
    Teichmann, C.
    Vautard, R.
    Daily precipitation statistics in a EURO-CORDEX RCM ensemble: added value of raw and bias-corrected high-resolution simulations2016In: Climate Dynamics, ISSN 0930-7575, E-ISSN 1432-0894, Vol. 47, no 3-4, p. 719-737Article in journal (Refereed)
  • 409.
    Lind, Petter
    et al.
    SMHI, Research Department, Climate research - Rossby Centre.
    Lindstedt, David
    SMHI, Research Department, Climate research - Rossby Centre.
    Kjellström, Erik
    SMHI, Research Department, Climate research - Rossby Centre.
    Jones, Colin
    SMHI, Research Department, Climate research - Rossby Centre.
    Spatial and Temporal Characteristics of Summer Precipitation over Central Europe in a Suite of High-Resolution Climate Models2016In: Journal of Climate, ISSN 0894-8755, E-ISSN 1520-0442, Vol. 29, no 10, p. 3501-3518Article in journal (Refereed)
  • 410. Pulatov, Bakhtiyor
    et al.
    Jonsson, Anna Maria
    Wilcke, Renate
    SMHI, Research Department, Climate research - Rossby Centre.
    Linderson, Maj-Lena
    Hall, Karin
    Bärring, Lars
    SMHI, Research Department, Climate research - Rossby Centre.
    Evaluation of the phenological synchrony between potato crop and Colorado potato beetle under future climate in Europe2016In: Agriculture, Ecosystems & Environment, ISSN 0167-8809, E-ISSN 1873-2305, Vol. 224, p. 39-49Article in journal (Refereed)
  • 411. Sanchez Arriola, Jana
    et al.
    Lindskog, Magnus
    SMHI, Research Department, Meteorology.
    Thorsteinsson, Sigurdur
    SMHI, Research Department, Meteorology.
    Bojarova, Jelena
    Variational Bias Correction of GNSS ZTD in the HARMONIE Modeling System2016In: Journal of Applied Meteorology and Climatology, ISSN 1558-8424, E-ISSN 1558-8432, Vol. 55, no 5, article id UNSP 1259Article in journal (Refereed)
  • 412. Lacressonniere, Gwendoline
    et al.
    Foret, Gilles
    Beekmann, Matthias
    Siour, Guillaume
    Engardt, Magnuz
    SMHI, Research Department, Air quality.
    Gauss, Michael
    Watson, Laura
    Andersson, Camilla
    SMHI, Research Department, Air quality.
    Colette, Augustin
    Josse, Beatrice
    Marecal, Virginie
    Nyiri, Agnes
    Vautard, Robert
    Impacts of regional climate change on air quality projections and associated uncertainties2016In: Climatic Change, ISSN 0165-0009, E-ISSN 1573-1480, Vol. 136, no 2, p. 309-324Article in journal (Refereed)
  • 413. Soci, Cornel
    et al.
    Bazile, Eric
    Besson, Francois
    Landelius, Tomas
    SMHI, Research Department, Atmospheric remote sensing.
    High-resolution precipitation re-analysis system for climatological purposes2016In: Tellus. Series A, Dynamic meteorology and oceanography, ISSN 0280-6495, E-ISSN 1600-0870, Vol. 68, article id 29879Article in journal (Refereed)
  • 414. Endris, Hussen Seid
    et al.
    Lennard, Christopher
    Hewitson, Bruce
    Dosio, Alessandro
    Nikulin, Grigory
    SMHI, Research Department, Climate research - Rossby Centre.
    Panitz, Hans-Juergen
    Teleconnection responses in multi-GCM driven CORDEX RCMs over Eastern Africa2016In: Climate Dynamics, ISSN 0930-7575, E-ISSN 1432-0894, Vol. 46, no 9-10, p. 2821-2846Article in journal (Refereed)
  • 415. Brodeau, Laurent
    et al.
    Koenigk, Torben
    SMHI, Research Department, Climate research - Rossby Centre.
    Extinction of the northern oceanic deep convection in an ensemble of climate model simulations of the 20th and 21st centuries2016In: Climate Dynamics, ISSN 0930-7575, E-ISSN 1432-0894, Vol. 46, no 9-10, p. 2863-2882Article in journal (Refereed)
  • 416. Pinto, Izidine
    et al.
    Lennard, Christopher
    Tadross, Mark
    Hewitson, Bruce
    Dosio, Alessandro
    Nikulin, Grigory
    SMHI, Research Department, Climate research - Rossby Centre.
    Panitz, Hans-Juergen
    Shongwe, Mxolisi E.
    Evaluation and projections of extreme precipitation over southern Africa from two CORDEX models2016In: Climatic Change, ISSN 0165-0009, E-ISSN 1573-1480, Vol. 135, no 3-4, p. 655-668Article in journal (Refereed)
  • 417. Berlin, Mats
    et al.
    Persson, Torgny
    Jansson, Gunnar
    Haapanen, Matti
    Ruotsalainen, Seppo
    Bärring, Lars
    SMHI, Research Department, Climate research - Rossby Centre.
    Gull, Bengt Andersson
    Scots pine transfer effect models for growth and survival in Sweden and Finland2016In: Silva Fennica, ISSN 0037-5330, E-ISSN 2242-4075, Vol. 50, no 3, article id 1562Article in journal (Refereed)
    Abstract [en]

    In this study, we developed models of transfer effects for growth and survival of Scots pine (Pinus sylvestris L.) in Sweden and Finland using a general linear mixed-model approach. For model development, we used 378 provenance and progeny trials with a total of 276 unimproved genetic entries (provenances and stand seed check-lots) distributed over a wide variety of climatic conditions in both countries. In addition, we used 119 progeny trials with 3921 selected genetic entries (open-and control pollinated plus-tree families) for testing model performance. As explanatory variables, both climatic indices derived from high-resolution gridded climate datasets and geographical variables were used. For transfer, latitude (photoperiod) and, for describing the site, temperature sum were found to be main drivers for both survival and growth. In addition, interaction terms (between transfer in latitude and site altitude for survival, and transfer in latitude and temperature sum for growth) entail changed reaction patterns of the models depending on climatic conditions of the growing site. The new models behave in a way that corresponds well to previous studies and recommendations for both countries. The model performance was tested using selected plus-trees from open and control pollinated progeny tests. Results imply that the models are valid for both countries and perform well also for genetically improved material. These models are the first step in developing common deployment recommendations for genetically improved forest regeneration material in both Sweden and Finland.

  • 418. Pareeth, Sajid
    et al.
    Delucchi, Luca
    Metz, Markus
    Rocchini, Duccio
    Devasthale, Abhay
    SMHI, Research Department, Atmospheric remote sensing.
    Raspaud, Martin
    SMHI, Core Services.
    Adrian, Rita
    Salmaso, Nico
    Neteler, Markus
    New Automated Method to Develop Geometrically Corrected Time Series of Brightness Temperatures from Historical AVHRR LAC Data2016In: Remote Sensing, ISSN 2072-4292, E-ISSN 2072-4292, Vol. 8, no 3Article in journal (Refereed)
    Abstract [en]

    Analyzing temporal series of satellite data for regional scale studies demand high accuracy in calibration and precise geo-rectification at higher spatial resolution. The Advanced Very High Resolution Radiometer (AVHRR) sensor aboard the National Oceanic and Atmospheric Administration (NOAA) series of satellites provide daily observations for the last 30 years at a nominal resolution of 1.1 km at nadir. However, complexities due to on-board malfunctions and orbital drifts with the earlier missions hinder the usage of these images at their original resolution. In this study, we developed a new method using multiple open source tools which can read level 1B radiances, apply solar and thermal calibration to the channels, remove bow-tie effects on wider zenith angles, correct for clock drifts on earlier images and perform precise geo-rectification by automated generation and filtering of ground control points using a feature matching technique. The entire workflow is reproducible and extendable to any other geographical location. We developed a time series of brightness temperature maps from AVHRR local area coverage images covering the sub alpine lakes of Northern Italy at 1 km resolution (1986-2014; 28 years). For the validation of derived brightness temperatures, we extracted Lake Surface Water Temperature (LSWT) for Lake Garda in Northern Italy and performed inter-platform (NOAA-x vs. NOAA-y) and cross-platform (NOAA-x vs. MODIS/ATSR/AATSR) comparisons. The MAE calculated over available same day observations between the pairs-NOAA-12/14, NOAA-17/18 and NOAA-18/19 are 1.18 K, 0.67 K, 0.35 K, respectively. Similarly, for cross-platform pairs, the MAE varied between 0.5 to 1.5 K. The validation of LSWT from various NOAA instruments with in-situ data shows high accuracy with mean R-2 and RMSE of 0.97 and 0.91 K respectively.

  • 419.
    Kahnert, Michael
    SMHI, Research Department, Air quality.
    Numerical solutions of the macroscopic Maxwell equations for scattering by non-spherical particles: A tutorial review2016In: Journal of Quantitative Spectroscopy and Radiative Transfer, ISSN 0022-4073, E-ISSN 1879-1352, Vol. 178, p. 22-37Article in journal (Refereed)
    Abstract [en]

    Numerical solution methods for electromagnetic scattering by non-spherical particles comprise a variety of different techniques, which can be traced back to different assumptions and solution strategies applied to the macroscopic Maxwell equations. One can distinguish between time- and frequency-domain methods; further, one can divide numerical techniques into finite-difference methods (which are based on approximating the differential operators), separation-of-variables methods (which are based on expanding the solution in a complete set of functions, thus approximating the fields), and volume integral-equation methods (which are usually solved by discretisation of the target volume and invoking the long-wave approximation in each volume cell). While existing reviews of the topic often tend to have a target audience of program developers and expert users, this tutorial review is intended to accommodate the needs of practitioners as well as novices to the field. The required conciseness is achieved by limiting the presentation to a selection of illustrative methods, and by omitting many technical details that are not essential at a first exposure to the subject. On the other hand, the theoretical basis of numerical methods is explained with little compromises in mathematical rigour; the rationale is that a good grasp of numerical light scattering methods is best achieved by understanding their foundation in Maxwell's theory. (C) 2015 Elsevier Ltd. All rights reserved.

  • 420. Andersson, Emma
    et al.
    Kahnert, Michael
    SMHI, Research Department, Air quality.
    Coupling aerosol optics to the MATCH (v5.5.0) chemical transport model and the SALSA (v1) aerosol microphysics module2016In: Geoscientific Model Development, ISSN 1991-959X, E-ISSN 1991-9603, Vol. 9, no 5, p. 1803-1826Article in journal (Refereed)
    Abstract [en]

    A new aerosol-optics model is implemented in which realistic morphologies and mixing states are assumed, especially for black carbon particles. The model includes both external and internal mixing of all chemical species, it treats externally mixed black carbon as fractal aggregates, and it accounts for inhomogeneous internal mixing of black carbon by use of a novel "core-grey-shell" model. Simulated results of aerosol optical properties, such as aerosol optical depth, backscattering coefficients and the Angstrom exponent, as well as radiative fluxes are computed with the new optics model and compared with results from an older optics-model version that treats all particles as externally mixed homogeneous spheres. The results show that using a more detailed description of particle morphology and mixing state impacts the aerosol optical properties to a degree of the same order of magnitude as the effects of aerosol-microphysical processes. For instance, the aerosol optical depth computed for two cases in 2007 shows a relative difference between the two optics models that varies over the European region between 28 and 18 %, while the differences caused by the inclusion or omission of the aerosol-microphysical processes range from 50 to 37 %. This is an important finding, suggesting that a simple optics model coupled to a chemical transport model can introduce considerable errors affecting radiative fluxes in chemistry-climate models, compromising comparisons of model results with remote sensing observations of aerosols, and impeding the assimilation of satellite products for aerosols into chemical-transport models.

  • 421. Ots, Riinu
    et al.
    Young, Dominique E.
    Vieno, Massimo
    Xu, Lu
    Dunmore, Rachel E.
    Allan, James D.
    Coe, Hugh
    Williams, Leah R.
    Herndon, Scott C.
    Ng, Nga L.
    Hamilton, Jacqueline F.
    Bergström, Robert
    SMHI, Research Department, Air quality.
    Di Marco, Chiara
    Nemitz, Eiko
    Mackenzie, Ian A.
    Kuenen, Jeroen J. P.
    Green, David C.
    Reis, Stefan
    Heal, Mathew R.
    Simulating secondary organic aerosol from missing diesel-related intermediate-volatility organic compound emissions during the Clean Air for London (ClearfLo) campaign2016In: Atmospheric Chemistry And Physics, ISSN 1680-7316, E-ISSN 1680-7324, Vol. 16, no 10, p. 6453-6473Article in journal (Refereed)
    Abstract [en]

    We present high-resolution (5aEuro-kmaEuro-aEuro parts per thousand x aEuro-5aEuro-km) atmospheric chemical transport model (ACTM) simulations of the impact of newly estimated traffic-related emissions on secondary organic aerosol (SOA) formation over the UK for 2012. Our simulations include additional diesel-related intermediate-volatility organic compound (IVOC) emissions derived directly from comprehensive field measurements at an urban background site in London during the 2012 Clean Air for London (ClearfLo) campaign. Our IVOC emissions are added proportionally to VOC emissions, as opposed to proportionally to primary organic aerosol (POA) as has been done by previous ACTM studies seeking to simulate the effects of these missing emissions. Modelled concentrations are evaluated against hourly and daily measurements of organic aerosol (OA) components derived from aerosol mass spectrometer (AMS) measurements also made during the ClearfLo campaign at three sites in the London area. According to the model simulations, diesel-related IVOCs can explain on average aEuro parts per thousand aEuro-30aEuro-% of the annual SOA in and around London. Furthermore, the 90th percentile of modelled daily SOA concentrations for the whole year is 3.8aEuro-A mu gaEuro-m(-3), constituting a notable addition to total particulate matter. More measurements of these precursors (currently not included in official emissions inventories) is recommended. During the period of concurrent measurements, SOA concentrations at the Detling rural background location east of London were greater than at the central London location. The model shows that this was caused by an intense pollution plume with a strong gradient of imported SOA passing over the rural location. This demonstrates the value of modelling for supporting the interpretation of measurements taken at different sites or for short durations.

  • 422. Eyring, Veronika
    et al.
    Righi, Mattia
    Lauer, Axel
    Evaldsson, Martin
    SMHI, Research Department, Climate research - Rossby Centre.
    Wenzel, Sabrina
    Jones, Colin
    SMHI, Research Department, Climate research - Rossby Centre.
    Anav, Alessandro
    Andrews, Oliver
    Cionni, Irene
    Davin, Edouard L.
    Deser, Clara
    Ehbrecht, Carsten
    Friedlingstein, Pierre
    Gleckler, Peter
    Gottschaldt, Klaus-Dirk
    Hagemann, Stefan
    Juckes, Martin
    Kindermann, Stephan
    Krasting, John
    Kunert, Dominik
    Levine, Richard
    Loew, Alexander
    Maekelae, Jarmo
    Martin, Gill
    Mason, Erik
    Phillips, Adam S.
    Read, Simon
    Rio, Catherine
    Roehrig, Romain
    Senftleben, Daniel
    Sterl, Andreas
    van Ulft, Lambertus H.
    Walton, Jeremy
    Wang, Shiyu
    SMHI, Research Department, Climate research - Rossby Centre.
    Williams, Keith D.
    ESMValTool (v1.0) - a community diagnostic and performance metrics tool for routine evaluation of Earth system models in CMIP2016In: Geoscientific Model Development, ISSN 1991-959X, E-ISSN 1991-9603, Vol. 9, no 5, p. 1747-1802Article in journal (Refereed)
    Abstract [en]

    A community diagnostics and performance metrics tool for the evaluation of Earth system models (ESMs) has been developed that allows for routine comparison of single or multiple models, either against predecessor versions or against observations. The priority of the effort so far has been to target specific scientific themes focusing on selected essential climate variables (ECVs), a range of known systematic biases common to ESMs, such as coupled tropical climate variability, monsoons, Southern Ocean processes, continental dry biases, and soil hydrology-climate interactions, as well as atmospheric CO2 budgets, tropospheric and stratospheric ozone, and tropospheric aerosols. The tool is being developed in such a way that additional analyses can easily be added. A set of standard namelists for each scientific topic reproduces specific sets of diagnostics or performance metrics that have demonstrated their importance in ESM evaluation in the peer-reviewed literature. The Earth System Model Evaluation Tool (ESMValTool) is a community effort open to both users and developers encouraging open exchange of diagnostic source code and evaluation results from the Coupled Model Intercomparison Project (CMIP) ensemble. This will facilitate and improve ESM evaluation beyond the state-of-the-art and aims at supporting such activities within CMIP and at individual modelling centres. Ultimately, we envisage running the ESMValTool alongside the Earth System Grid Federation (ESGF) as part of a more routine evaluation of CMIP model simulations while utilizing observations available in standard formats (obs4MIPs) or provided by the user.

  • 423. Sporre, Moa K.
    et al.
    O'Connor, Ewan J.
    Håkansson, Nina
    SMHI, Research Department, Atmospheric remote sensing.
    Thoss, Anke
    SMHI, Research Department, Atmospheric remote sensing.
    Swietlicki, Erik
    Petaja, Tuukka
    Comparison of MODIS and VIIRS cloud properties with ARM ground-based observations over Finland2016In: Atmospheric Measurement Techniques, ISSN 1867-1381, E-ISSN 1867-8548, Vol. 9, no 7, p. 3193-3203Article in journal (Refereed)
  • 424. Silver, Jeremy D.
    et al.
    Christensen, Jesper H.
    Kahnert, Michael
    SMHI, Research Department, Air quality.
    Robertson, Lennart
    SMHI, Research Department, Air quality.
    Rayner, Peter J.
    Brandt, Jorgen
    Multi-species chemical data assimilation with the Danish Eulerian hemispheric model: system description and verification2016In: Journal of Atmospheric Chemistry, ISSN 0167-7764, E-ISSN 1573-0662, Vol. 73, no 3, p. 261-302Article in journal (Refereed)
  • 425.
    Landelius, Tomas
    et al.
    SMHI, Research Department, Atmospheric remote sensing.
    Dahlgren, Per
    SMHI, Research Department, Meteorology.
    Gollvik, Stefan
    SMHI, Research Department, Meteorology.
    Jansson, A.
    Olsson, Esbjörn
    SMHI, Research Department, Meteorology.
    A high-resolution regional reanalysis for Europe. Part 2: 2D analysis of surface temperature, precipitation and wind2016In: Quarterly Journal of the Royal Meteorological Society, ISSN 0035-9009, E-ISSN 1477-870X, Vol. 142, no 698, p. 2132-2142Article in journal (Refereed)
  • 426. Rafael, S.
    et al.
    Martins, Helena
    SMHI, Research Department, Climate research - Rossby Centre.
    Sa, E.
    Carvalho, D.
    Borrego, C.
    Lopes, M.
    Influence of urban resilience measures in the magnitude and behaviour of energy fluxes in the city of Porto (Portugal) under a climate change scenario2016In: Science of the Total Environment, ISSN 0048-9697, E-ISSN 1879-1026, Vol. 566, p. 1500-1510Article in journal (Refereed)
  • 427.
    Dahlgren, Per
    et al.
    SMHI, Research Department, Meteorology.
    Landelius, Tomas
    SMHI, Research Department, Atmospheric remote sensing.
    Kållberg, Per
    SMHI, Research Department, Meteorology.
    Gollvik, Stefan
    SMHI, Research Department, Meteorology.
    A high-resolution regional reanalysis for Europe. Part 1: Three-dimensional reanalysis with the regional HIgh-Resolution Limited-Area Model (HIRLAM)2016In: Quarterly Journal of the Royal Meteorological Society, ISSN 0035-9009, E-ISSN 1477-870X, Vol. 142, no 698, p. 2119-2131Article in journal (Refereed)
  • 428. Mahmood, Rashed
    et al.
    von Salzen, Knut
    Flanner, Mark
    Sand, Maria
    Langner, Joakim
    SMHI, Research Department, Air quality.
    Wang, Hailong
    Huang, Lin
    Seasonality of global and Arctic black carbon processes in the Arctic Monitoring and Assessment Programme models2016In: Journal of Geophysical Research - Atmospheres, ISSN 2169-897X, E-ISSN 2169-8996, Vol. 121, no 12, p. 7100-7116Article in journal (Refereed)
  • 429. Kulshrestha, Monika J.
    et al.
    Singh, Ruchi
    Engardt, Magnuz
    SMHI, Research Department, Air quality.
    Ambient and Episodic Levels of Metals in PM10 Aerosols and Their Source Apportionment in Central Delhi, India2016In: JOURNAL OF HAZARDOUS TOXIC AND RADIOACTIVE WASTE, ISSN 2153-5493, Vol. 20, no 4, article id UNSP A4014002Article in journal (Refereed)
  • 430. Leung, W. -YH.
    et al.
    Savre, J.
    Bender, F. A. -M
    Komppula, M.
    Portin, H.
    Romakkaniemi, S.
    Sedlar, Joseph
    SMHI, Research Department, Atmospheric remote sensing.
    Noone, K.
    Ekman, A. M. L.
    Sensitivity of a continental night-time stratocumulus-topped boundary layer to varying environmental conditions2016In: QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, ISSN 0035-9009, Vol. 142, no 700, p. 2911-2924Article in journal (Refereed)
  • 431.
    Devasthale, Abhay
    et al.
    SMHI, Research Department, Atmospheric remote sensing.
    Sedlar, Joseph
    SMHI, Research Department, Atmospheric remote sensing.
    Kahn, Brian H.
    Tjernstrom, Michael
    Fetzer, Eric J.
    Tian, Baijun
    Teixeira, Joao
    Pagano, Thomas S.
    A DECADE OF SPACEBORNE OBSERVATIONS OF THE ARCTIC ATMOSPHERE Novel. Insights from NASA's AIRS Instrument2016In: BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, ISSN 0003-0007, Vol. 97, no 11, p. 2163-2176Article in journal (Refereed)
  • 432. Gampe, David
    et al.
    Nikulin, Grigory
    SMHI, Research Department, Climate research - Rossby Centre.
    Ludwig, Ralf
    Using an ensemble of regional climate models to assess climate change impacts on water scarcity in European river basins2016In: SCIENCE OF THE TOTAL ENVIRONMENT, ISSN 0048-9697, Vol. 573, p. 1503-1518Article in journal (Refereed)
  • 433. Stensgaard, Anna-Sofie
    et al.
    Booth, Mark
    Nikulin, Grigory
    SMHI, Research Department, Climate research - Rossby Centre.
    McCreesh, Nicky
    Combining process-based and correlative models improves predictions of climate change effects on Schistosoma mansoni transmission in eastern Africa2016In: GEOSPATIAL HEALTH, ISSN 1827-1987, Vol. 11, p. 94-101Article in journal (Refereed)
  • 434. Leedale, Joseph
    et al.
    Tompkins, Adrian M.
    Caminade, Cyril
    Jones, Anne E.
    Nikulin, Grigory
    SMHI, Research Department, Climate research - Rossby Centre.
    Morse, Andrew P.
    Projecting malaria hazard from climate change in eastern Africa using large ensembles to estimate uncertainty2016In: GEOSPATIAL HEALTH, ISSN 1827-1987, Vol. 11, p. 102-114Article in journal (Refereed)
  • 435. Omstedt, Anders
    et al.
    Edman, Moa
    SMHI, Research Department, Oceanography.
    Claremar, Bjorn
    Rutgersson, Anna
    SMHI, Research Department, Climate research - Rossby Centre.
    Modelling the contributions to marine acidification from deposited SOx, NOx, and NHx in the Baltic Sea: Past and present situations2015In: Continental Shelf Research, ISSN 0278-4343, E-ISSN 1873-6955, Vol. 111, p. 234-249Article in journal (Refereed)
    Abstract [en]

    We have examined the effects of historical atmospheric depositions of sulphate, nitrate, and ammonium from land and shipping on the acid-base balance in the Baltic Sea. The modelling considers the 1750-2014 period, when land and ship emissions changed greatly, with increasing carbon dioxide concentrations, SOx, NOx, and NHx emissions, and nutrient loads. The present results indicate that Baltic Sea acidification due to the atmospheric deposition of acids peaked around 1980, with a pH cumulative decrease of approximately 10(-2) in surface waters. This is one order of magnitude less than the cumulative acidification due to increased atmospheric CO2. The acidification contribution of shipping is one order of magnitude less than that of land emissions. However, the pH trend due to atmospheric acids has started to reverse due to reduced land emissions, though the effect of shipping is ongoing. The effect of strong atmospheric acids on Baltic Sea water depends on the region and period studied. The largest total alkalinity sink per surface area is in the south-western Baltic Sea where shipping is intense. Considering the entire Baltic Sea over the 2001-2010 period, the pH changes are approximately -3 x 10(-3) to -11 x 10(-3) and -4 x 10(-4) to -16 x 10(-4) pH units attributable to all emissions and ship emissions only, respectively. The corresponding changes in total alkalinity are approximately -10 to -30 mu mol kg(-1) and -1 to -4 mu mol kg(-1) attributable to all emissions and ship emissions only, respectively. (C) 2015 Elsevier Ltd. All rights reserved.

  • 436.
    Koenigk, Torben
    et al.
    SMHI, Research Department, Climate research - Rossby Centre.
    Berg, Peter
    SMHI, Research Department, Hydrology.
    Doescher, Ralf
    SMHI, Research Department, Climate research - Rossby Centre.
    Arctic climate change in an ensemble of regional CORDEX simulations2015In: Polar Research, ISSN 0800-0395, E-ISSN 1751-8369, Vol. 34, article id 24603Article in journal (Refereed)
    Abstract [en]

    Fifth phase Climate Model Intercomparison Project historical and scenario simulations from four global climate models (GCMs) using the Representative Concentration Pathways greenhouse gas concentration trajectories RCP4.5 and RCP8.5 are downscaled over the Arctic with the regional Rossby Centre Atmosphere model (RCA). The regional model simulations largely reflect the circulation bias patterns of the driving global models in the historical period, indicating the importance of lateral and lower boundary conditions. However, local differences occur as a reduced winter 2-m air temperature bias over the Arctic Ocean and increased cold biases over land areas in RCA. The projected changes are dominated by a strong warming in the Arctic, exceeding 15 degrees K in autumn and winter over the Arctic Ocean in RCP8.5, strongly increased precipitation and reduced sea-level pressure. Near-surface temperature and precipitation are linearly related in the Arctic. The wintertime inversion strength is reduced, leading to a less stable stratification of the Arctic atmosphere. The diurnal temperature range is reduced in all seasons. The large-scale change patterns are dominated by the surface and lateral boundary conditions so future response is similar in RCA and the driving global models. However, the warming over the Arctic Ocean is smaller in RCA; the warming over land is larger in winter and spring but smaller in summer. The future response of winter cloud cover is opposite in RCA and the GCMs. Precipitation changes in RCA are much larger during summer than in the global models and more small-scale change patterns occur.

  • 437. Eggert, B.
    et al.
    Berg, Peter
    SMHI, Research Department, Hydrology.
    Haerter, J. O.
    Jacob, D.
    Moseley, C.
    Temporal and spatial scaling impacts on extreme precipitation2015In: Atmospheric Chemistry And Physics, ISSN 1680-7316, E-ISSN 1680-7324, Vol. 15, no 10, p. 5957-5971Article in journal (Refereed)
    Abstract [en]

    Convective and stratiform precipitation events have fundamentally different physical causes. Using a radar composite over Germany, this study separates these precipitation types and compares extremes at different spatial and temporal scales, ranging from 1 to 50 km and 5 min to 6 h, respectively. Four main objectives are addressed. First, we investigate extreme precipitation intensities for convective and stratiform precipitation events at different spatial and temporal resolutions to identify type-dependent space and time reduction factors and to analyze regional and seasonal differences over Germany. We find strong differences between the types, with up to 30% higher reduction factors for convective compared to stratiform extremes, exceeding all other observed seasonal and regional differences within one type. Second, we investigate how the differences in reduction factors affect the contribution of each type to extreme events as a whole, again dependent on the scale and the threshold chosen. A clear shift occurs towards more convective extremes at higher resolution or higher percentiles. For horizontal resolutions of current climate model simulations, i.e., similar to 10 km, the temporal resolution of the data as well as the chosen threshold have profound influence on which type of extreme will be statistically dominant. Third, we compare the ratio of area to duration reduction factor for convective and stratiform events and find that convective events have lower effective advection velocities than stratiform events and are therefore more strongly affected by spatial than by temporal aggregation. Finally, we discuss the entire precipitation distribution regarding data aggregation and identify matching pairs of temporal and spatial resolutions where similar distributions are observed. The information is useful for planning observational networks or storing model data at different temporal and spatial scales.

  • 438.
    Andersson, Jafet
    et al.
    SMHI, Research Department, Hydrology.
    Pechlivanidis, Ilias
    SMHI, Research Department, Hydrology.
    Gustafsson, David
    SMHI, Research Department, Hydrology.
    Donnelly, Chantal
    SMHI, Research Department, Hydrology.
    Arheimer, Berit
    SMHI, Research Department, Hydrology.
    Key factors for improving large-scale hydrological model performance2015In: European Water, ISSN 1792-085X, Vol. 49, p. 77-88Article in journal (Refereed)
  • 439. Groger, Matthias
    et al.
    Dieterich, Christian
    SMHI, Research Department, Oceanography.
    Meier, Markus
    SMHI, Research Department, Oceanography.
    Schimanke, Semjon
    SMHI, Research Department, Oceanography.
    Thermal air-sea coupling in hindcast simulations for the North Sea and Baltic Sea on the NW European shelf2015In: Tellus. Series A, Dynamic meteorology and oceanography, ISSN 0280-6495, E-ISSN 1600-0870, Vol. 67, article id 26911Article in journal (Refereed)
    Abstract [en]

    This article compares interactively coupled atmosphere-ocean hindcast simulations with stand-alone runs of the atmosphere and ocean models using the recently developed regional ocean-atmosphere model NEMO-Nordic for the North Sea and Baltic Sea. In the interactively coupled run, the ocean and the atmosphere components were allowed to exchange mass, momentum and heat every 3 h. Our results show that interactive coupling significantly improves simulated winter sea surface temperatures (SSTs) in the Baltic Sea. The ocean and atmosphere stand-alone runs, respectively, resulted in too low sea surface and air temperatures over the Baltic Sea. These two runs suffer from too cold prescribed ERA40 SSTs, which lower air temperatures and weaken winds in the atmosphere only run. In the ocean-only run, the weaker winds additionally lower the vertical mixing thereby lowering the upward transport of warmer subpycnocline waters. By contrast, in the interactively coupled run, the ocean-atmosphere heat exchange evolved freely and demonstrated good skills in reproducing observed surface temperatures. Despite the strong impact on oceanic and atmospheric variables in the coupling area, no far reaching influence on atmospheric variables over land can be identified. In perturbation experiments, the different dynamics of the two coupling techniques is investigated in more detail by implementing strong positive winter temperature anomalies in the ocean model. Here, interactive coupling results in a substantially higher preservation of heat anomalies because the atmosphere also warmed which damped the ocean to atmosphere heat transfer. In the passively coupled set-up, this atmospheric feedback is missing, which resulted in an unrealistically high oceanic heat loss. The main added value of interactive air-sea coupling is twofold: (1) the elimination of any boundary condition at the air-sea interface and (2) the more realistic dynamical response to perturbations in the ocean-atmosphere heat balance, which will be essential in climate warming scenarios.

  • 440. Aich, Valentin
    et al.
    Liersch, Stefan
    Vetter, Tobias
    Andersson, Jafet
    SMHI, Research Department, Hydrology.
    Mueller, Eva N.
    Hattermann, Fred F.
    Climate or Land Use?-Attribution of Changes in River Flooding in the Sahel Zone2015In: Water, ISSN 2073-4441, E-ISSN 2073-4441, Vol. 7, no 6, p. 2796-2820Article in journal (Refereed)
    Abstract [en]

    This study intends to contribute to the ongoing discussion on whether land use and land cover changes (LULC) or climate trends have the major influence on the observed increase of flood magnitudes in the Sahel. A simulation-based approach is used for attributing the observed trends to the postulated drivers. For this purpose, the ecohydrological model SWIM (Soil and Water Integrated Model) with a new, dynamic LULC module was set up for the Sahelian part of the Niger River until Niamey, including the main tributaries Sirba and Goroul. The model was driven with observed, reanalyzed climate and LULC data for the years 1950-2009. In order to quantify the shares of influence, one simulation was carried out with constant land cover as of 1950, and one including LULC. As quantitative measure, the gradients of the simulated trends were compared to the observed trend. The modeling studies showed that for the Sirba River only the simulation which included LULC was able to reproduce the observed trend. The simulation without LULC showed a positive trend for flood magnitudes, but underestimated the trend significantly. For the Goroul River and the local flood of the Niger River at Niamey, the simulations were only partly able to reproduce the observed trend. In conclusion, the new LULC module enabled some first quantitative insights into the relative influence of LULC and climatic changes. For the Sirba catchment, the results imply that LULC and climatic changes contribute in roughly equal shares to the observed increase in flooding. For the other parts of the subcatchment, the results are less clear but show, that climatic changes and LULC are drivers for the flood increase; however their shares cannot be quantified. Based on these modeling results, we argue for a two-pillar adaptation strategy to reduce current and future flood risk: Flood mitigation for reducing LULC-induced flood increase, and flood adaptation for a general reduction of flood vulnerability.

  • 441. Thirel, G.
    et al.
    Andreassian, V.
    Perrin, C.
    Audouy, J. -N
    Berthet, L.
    Edwards, P.
    Folton, N.
    Furusho, C.
    Kuentz, A.
    Lerat, J.
    Lindström, Göran
    SMHI, Research Department, Hydrology.
    Martin, E.
    Mathevet, T.
    Merz, R.
    Parajka, J.
    Ruelland, D.
    Vaze, J.
    Hydrology under change: an evaluation protocol to investigate how hydrological models deal with changing catchments2015In: Hydrological Sciences Journal, ISSN 0262-6667, E-ISSN 2150-3435, Vol. 60, no 7-8, p. 1184-1199Article in journal (Refereed)
    Abstract [en]

    Testing hydrological models under changing conditions is essential to evaluate their ability to cope with changing catchments and their suitability for impact studies. With this perspective in mind, a workshop dedicated to this issue was held at the 2013 General Assembly of the International Association of Hydrological Sciences (IAHS) in Goteborg, Sweden, in July 2013, during which the results of a common testing experiment were presented. Prior to the workshop, the participants had been invited to test their own models on a common set of basins showing varying conditions specifically set up for the workshop. All these basins experienced changes, either in physical characteristics (e.g. changes in land cover) or climate conditions (e.g. gradual temperature increase). This article presents the motivations and organization of this experimentthat isthe testing (calibration and evaluation) protocol and the common framework of statistical procedures and graphical tools used to assess the model performances. The basins datasets are also briefly introduced (a detailed description is provided in the associated Supplementary material).

  • 442. Malnes, E.
    et al.
    Buanes, A.
    Nagler, T.
    Bippus, G.
    Gustafsson, David
    SMHI, Research Department, Hydrology.
    Schiller, C.
    Metsamaki, S.
    Pulliainen, J.
    Luojus, K.
    Larsen, H. E.
    Solberg, R.
    Diamandi, A.
    Wiesmann, A.
    User requirements for the snow and land ice services - CryoLand2015In: The Cryosphere, ISSN 1994-0416, E-ISSN 1994-0424, Vol. 9, no 3, p. 1191-1202Article in journal (Refereed)
    Abstract [en]

    CryoLand (2011-2015) is a project carried out within the 7th Framework of the European Commission aimed at developing downstream services for monitoring seasonal snow, glaciers and lake/river ice primarily based on satellite remote sensing. The services target private and public users from a wide variety of application areas, and aim to develop sustainable services after the project is completed. The project has performed a thorough user requirement survey in order to derive targeted requirements for the service and provide recommendations for the design and priorities of the service. In this paper we describe the methods used, the major findings in this user survey, and how we used the results to design and specify the CryoLand snow and land ice service. The user requirement analysis shows that a European operational snow and land ice service is required and that there exists developed cryosphere products that can meet the specific needs. The majority of the users were mainly interested not only in the snow services, but also the lake/river ice products and the glacier products were desired.

  • 443. van Vliet, Michelle T. H.
    et al.
    Donnelly, Chantal
    SMHI, Research Department, Hydrology.
    Strombäck, Lena
    SMHI, Research Department, Hydrology.
    Capell, Réne
    SMHI, Research Department, Hydrology.
    Ludwig, Fulco
    European scale climate information services for water use sectors2015In: Journal of Hydrology, ISSN 0022-1694, E-ISSN 1879-2707, Vol. 528, p. 503-513Article in journal (Refereed)
    Abstract [en]

    This study demonstrates a climate information service for pan-European water use sectors that are vulnerable to climate change induced hydrological changes, including risk and safety (disaster preparedness), agriculture, energy (hydropower and cooling water use for thermoelectric power) and environment (water quality). To study the climate change impacts we used two different hydrological models forced with an ensemble of bias-corrected general circulation model (GCM) output for both the lowest (2.6) and highest (8.5) representative concentration pathways (RCP). Selected indicators of water related vulnerability for each sector were then calculated from the hydrological model results. Our results show a distinct north-south divide in terms of climate change impacts; in the south the water availability will reduce while in the north water availability will increase. Across different climate models precipitation and streamflow increase in northern Europe and decrease in southern Europe, but the latitude at which this change occurs varies depending on the GCM. Hydrological extremes are increasing over large parts of Europe. The agricultural sector will be affected by reduced water availability (in the south) and increased drought. Both streamflow and soil moistures droughts are projected to increase in most parts of Europe except in northern Scandinavia and the Alps. The energy sector will be affected by lower hydropower potential in most European countries and reduced cooling water availability due to higher water temperatures and reduced summer river flows. Our results show that in particular in the Mediterranean the pressures are high because of increasing drought which will have large impacts on both the agriculture and energy sectors. In France and Italy this is combined with increased flood hazards. Our results show important impacts of climate change on European water use sectors indicating a clear need for adaptation. (C) 2015 Published by Elsevier B.V.

  • 444.
    Arheimer, Berit
    et al.
    SMHI, Research Department, Hydrology.
    Nilsson, Johanna
    Lindström, Göran
    SMHI, Research Department, Hydrology.
    Experimenting with Coupled Hydro-Ecological Models to Explore Measure Plans and Water Quality Goals in a Semi-Enclosed Swedish Bay2015In: Water, ISSN 2073-4441, E-ISSN 2073-4441, Vol. 7, no 7, p. 3906-3924Article in journal (Refereed)
    Abstract [en]

    Measure plans are currently being developed for the Water Framework Directive (WFD) by European water authorities. In Sweden, such plans include measures for good ecological status in the coastal ecosystem. However, the effect of suggested measures is not yet known. We therefore experimented with different nutrient reduction measures on land and in the sea, using a model system of two coupled dynamic models for a semi-enclosed bay and its catchment. The science question was whether it is worthwhile to implement measures in the local catchment area to reach local environmental goals, or if the status of the Bay is more governed by the water exchange with the Sea. The results indicate that by combining several measures in the catchment, the nutrient load can be reduced by 15%-20%. To reach the same effect on nutrient concentrations in the Bay, the concentrations of the sea must be reduced by 80%. Hence, in this case, local measures have a stronger impact on coastal water quality. The experiment also show that the present targets for good ecological status set up by the Swedish water authorities may be unrealistic for this Bay. Finally, we discuss when and how to use hydro-ecological models for societal needs.

  • 445.
    Bergström, Sten
    et al.
    SMHI, Research Department, Hydrology.
    Lindström, Göran
    SMHI, Core Services.
    Interpretation of runoff processes in hydrological modelling experience from the HBV approach2015In: Hydrological Processes, ISSN 0885-6087, E-ISSN 1099-1085, Vol. 29, no 16, p. 3535-3545Article in journal (Refereed)
    Abstract [en]

    The process of development and application of the Hydrologiska Byrans Vattenbalansavdelning hydrological model over a time period of more than 40years is reviewed and discussed. Emphasis is on the early modelling strategy and physical considerations based on contemporary research on runoff formation processes in the drainage basin. This includes areal considerations on the catchment scale, soil moisture and evapotranspiration and storages and discharge as represented by the response function of the model. The introduction of the concept of dynamic recharge and discharge areas is also addressed as well as the modelling of snow accumulation and melt. Some operational international experiences are also addressed. Copyright (c) 2015 John Wiley & Sons, Ltd.

  • 446.
    Berg, Peter
    et al.
    SMHI, Research Department, Hydrology.
    Bosshard, Thomas
    SMHI, Research Department, Hydrology.
    Yang, Wei
    SMHI, Research Department, Hydrology.
    Model Consistent Pseudo-Observations of Precipitation and Their Use for Bias Correcting Regional Climate Models2015In: CLIMATE, ISSN 2225-1154, Vol. 3, no 1, p. 118-132Article in journal (Refereed)
    Abstract [en]

    Lack of suitable observational data makes bias correction of high space and time resolution regional climate models (RCM) problematic. We present a method to construct pseudo-observational precipitation data by merging a large scale constrained RCM reanalysis downscaling simulation with coarse time and space resolution observations. The large scale constraint synchronizes the inner domain solution to the driving reanalysis model, such that the simulated weather is similar to observations on a monthly time scale. Monthly biases for each single month are corrected to the corresponding month of the observational data, and applied to the finer temporal resolution of the RCM. A low-pass filter is applied to the correction factors to retain the small spatial scale information of the RCM. The method is applied to a 12.5 km RCM simulation and proven successful in producing a reliable pseudo-observational data set. Furthermore, the constructed data set is applied as reference in a quantile mapping bias correction, and is proven skillful in retaining small scale information of the RCM, while still correcting the large scale spatial bias. The proposed method allows bias correction of high resolution model simulations without changing the fine scale spatial features, i.e., retaining the very information required by many impact models.

  • 447. Weigel, Benjamin
    et al.
    Andersson, Helén
    SMHI, Research Department, Oceanography.
    Meier, Markus
    SMHI, Research Department, Oceanography.
    Blenckner, Thorsten
    Snickars, Martin
    Bonsdorff, Erik
    Long-term progression and drivers of coastal zoobenthos in a changing system2015In: Marine Ecology Progress Series, ISSN 0171-8630, E-ISSN 1616-1599, Vol. 528, p. 141-159Article in journal (Refereed)
    Abstract [en]

    Coastal zones are facing climate-driven change coupled with escalating eutrophication. With increasing shifts in hydrographic conditions during the past few decades, a focal task is to understand how environmental drivers affect zoobenthic communities, which play a crucial role in ecosystem functioning. By using long-term data, spanning 40 yr (1973 to 2013) in the northern Baltic Sea, we showed a disparity in zoobenthic responses with pronounced changes in community composition and a trend towards decreased biomass in sheltered areas, while biomasses increased in exposed areas of the coastal zone. We used generalized additive modeling to show that bottom oxygen saturation, sea surface temperature and organic load of the sediments were the main environmental drivers behind contrasting patterns in biomass progression. Oxygen saturation alone explained over one third of the deviation in the biomass developments in sheltered areas, while exposed areas were mainly limited by organic content of the sediments. We analyzed high-resolution climate-scenario simulations, following the Intergovernmental Panel on Climate Change scenarios for the Baltic Sea region in combination with different nutrient load scenarios, for the end of the 21st century. The scenario outcomes showed negative trends in bottom oxygen concentrations throughout the coastal and archipelago zone along with overall increasing temperatures and primary production, and decreasing salinity. Our results suggest that these projected future conditions will strengthen the observed pattern in decreasing zoobenthic production in the immediate coastal zones. Moreover, the potential intensification of unfavorable conditions ex-panding seaward may lead to an expansion of biomass loss to more exposed sites.

  • 448.
    Kuentz, Anna
    et al.
    SMHI, Core Services.
    Mathevet, T.
    Gailhard, J.
    Hingray, B.
    Building long-term and high spatio-temporal resolution precipitation and air temperature reanalyses by mixing local observations and global atmospheric reanalyses: the ANATEM model2015In: Hydrology and Earth System Sciences, ISSN 1027-5606, E-ISSN 1607-7938, Vol. 19, no 6, p. 2717-2736Article in journal (Refereed)
    Abstract [en]

    Efforts to improve the understanding of past climatic or hydrologic variability have received a great deal of attention in various fields of geosciences such as glaciology, dendrochronology, sedimentology and hydrology. Based on different proxies, each research community produces different kinds of climatic or hydrologic reanalyses at different spatio-temporal scales and resolutions. When considering climate or hydrology, many studies have been devoted to characterising variability, trends or breaks using observed time series representing different regions or climates of the world. However, in hydrology, these studies have usually been limited to short temporal scales (mainly a few decades and more rarely a century) because they require observed time series (which suffer from a limited spatio-temporal density). This paper introduces ANATEM, a method that combines local observations and large-scale climatic information (such as the 20CR Reanalysis) to build long-term probabilistic air temperature and precipitation time series with a high spatio-temporal resolution (1 day and a few km(2)). ANATEM was tested on the reconstruction of air temperature and precipitation time series of 22 watersheds situated in the Durance River basin, in the French Alps. Based on a multi-criteria and multi-scale diagnosis, the results show that ANATEM improves the performance of classical statistical models - especially concerning spatial homogeneity - while providing an original representation of uncertainties which are conditioned by atmospheric circulation patterns. The ANATEM model has been also evaluated for the regional scale against independent long-term time series and was able to capture regional low-frequency variability over more than a century (1883-2010).

  • 449. Konigson, Sara J.
    et al.
    Fredriksson, Ronny E.
    Lunneryd, Sven-Gunnar
    Strömberg, Patrik
    SMHI, Core Services.
    Bergstrom, Ulf M.
    Cod pots in a Baltic fishery: are they efficient and what affects their efficiency?2015In: ICES Journal of Marine Science, ISSN 1054-3139, E-ISSN 1095-9289, Vol. 72, no 5, p. 1545-1554Article in journal (Refereed)
    Abstract [en]

    With the growing grey seal population in the Baltic Sea, the inshore cod fishery has suffered dramatic increases in both catch losses and damage to fishing gear. To mitigate this situation, cod pots were evaluated as an alternative to traditional gillnets and longlines. During a 3-year study, cod pots were used by commercial fishers in two areas off the coast of Sweden. Using the data from this study, we evaluated catches from pots in relation to other gear types and investigated the effects of environmental and fisheries-related variables such as depth and soak time. The comparison of pots with other gear types showed that, during the first half of the year, the pot fishery generated lower daily catches than the gillnet and longline fisheries at comparable fishing efforts. During the second half of the year, catches in the pot fishery exceeded or were equal to those in the traditional fisheries. Using generalized additive models to evaluate the impact of environmental and fisheries-related variables on pot catches, we showed that, in both areas, the catch per unit effort (cpue) of legal-sized cod was affected by the water depth, the time of year (months), and the soak time. In one of the areas, cpue was also affected by the direction of the water current in relation to the orientation of the string of pots. The cpue of undersized cod was affected by topographic variables such as the slope and the complexity of the bottom, in addition to the water depth, month of the year, and soak time. The results from the study indicate that pots can be a useful alternative gear in the Baltic cod fishery, at least during part of the year. By using our information on how catches are affected by environmental and fisheries-related variables, the pot fishery may be further optimized to increase catches.

  • 450. Wilk, Julie
    et al.
    Hjerpe, Mattias
    Yang, Wei
    SMHI, Research Department, Hydrology.
    Fan, Hua
    Farm-scale adaptation under extreme climate and rapid economic transition2015In: Environment, Development and Sustainability, ISSN 1387-585X, E-ISSN 1573-2975, Vol. 17, no 3, p. 393-407Article in journal (Refereed)
    Abstract [en]

    This paper aims to analyse what shapes farmers' vulnerability and adaptation strategies in the context of rapid change. Xinjiang is semi-arid, with extremes of temperature, growing seasons and winds. Favourable socioeconomic conditions have boosted the wellbeing of farmers in the past decades. Interviews with forty-seven farmers led to the categorization of five groups according to the predominant type of farming activity: animal farmers, government farmers (leasing land from the Xinjiang Production and Construction Group), crop farmers, agri-tourism operators and entrepreneurs. High government support has aided farmers to deal with climate challenges, through advanced technology, subsidies and loans. Farmers, however, greatly contribute to their own high adaptive capacity through inventiveness, flexibility and a high knowledge base. Although the future climate will entail hotter temperatures, farmers can be seen as generally well equipped to deal with these challenges because of the high adaptive capacity they currently have and utilize. Those that are most vulnerable are those that have difficulty to access credit e.g. animal farmers and those that do not want to change their agricultural systems e.g. from pastoral lifestyles to include tourism-based operations.

6789101112 401 - 450 of 1375
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.7
|