Change search
Refine search result
567891011 22 - 24 of 37
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 22. Hazeleger, Wilco
    et al.
    Severijns, Camiel
    Semmler, Tido
    Stefanescu, Simona
    Yang, Shuting
    Wang, Xueli
    Wyser, Klaus
    SMHI, Research Department, Climate research - Rossby Centre.
    Dutra, Emanuel
    Baldasano, Jose M.
    Bintanja, Richard
    Bougeault, Philippe
    Caballero, Rodrigo
    Ekman, Annica M. L.
    Christensen, Jens H.
    van den Hurk, Bart
    Jimenez, Pedro
    Jones, Colin
    SMHI, Research Department, Climate research - Rossby Centre.
    Kållberg, Per
    SMHI, Research Department, Meteorology.
    Koenigk, Torben
    SMHI, Research Department, Climate research - Rossby Centre.
    McGrath, Ray
    Miranda, Pedro
    Van Noije, Twan
    Palmer, Tim
    Parodi, Jose A.
    Schmith, Torben
    Selten, Frank
    Storelvmo, Trude
    Sterl, Andreas
    Tapamo, Honore
    Vancoppenolle, Martin
    Viterbo, Pedro
    Willén, Ulrika
    SMHI, Research Department, Climate research - Rossby Centre.
    EC-Earth A Seamless Earth-System Prediction Approach in Action2010In: Bulletin of The American Meteorological Society - (BAMS), ISSN 0003-0007, E-ISSN 1520-0477, Vol. 91, no 10, p. 1357-1363Article in journal (Other academic)
  • 23. Johansson, Mattias
    et al.
    Galle, Bo
    Zhang, Yan
    Rivera, Claudia
    Chen, Deliang
    Wyser, Klaus
    SMHI, Research Department, Climate research - Rossby Centre.
    The dual-beam mini-DOAS technique-measurements of volcanic gas emission, plume height and plume speed with a single instrument2009In: Bulletin of Volcanology, ISSN 0258-8900, E-ISSN 1432-0819, Vol. 71, no 7, p. 747-751Article in journal (Refereed)
    Abstract [en]

    The largest error in determining volcanic gas fluxes using ground based optical remote sensing instruments is typically the determination of the plume speed, and in the case of fixed scanning instruments also the plume height. We here present a newly developed technique capable of measuring plume height, plume speed and gas flux using one single instrument by simultaneously collecting scattered sunlight in two directions. The angle between the two measurement directions is fixed, removing the need for time consuming in-field calibrations. The plume height and gas flux is measured by traversing the plume and the plume speed is measured by performing a stationary measurement underneath the plume. The instrument was tested in a field campaign in May 2005 at Mt. Etna, Italy, where the measured results are compared to wind fields derived from a meso-scale meteorological model (MM5). The test and comparison show that the instrument is functioning and capable of estimating wind speed at the plume height.

  • 24. Miao, J. -F
    et al.
    Wyser, Klaus
    SMHI, Research Department, Climate research - Rossby Centre.
    Chen, D.
    Ritchie, H.
    Impacts of boundary layer turbulence and land surface process parameterizations on simulated sea breeze characteristics2009In: Annales Geophysicae, ISSN 0992-7689, E-ISSN 1432-0576, Vol. 27, no 6, p. 2303-2320Article in journal (Refereed)
    Abstract [en]

    This paper investigates the sensitivity of sea breeze (SB) simulations to combinations of boundary-layer turbulence and land-surface process parameterizations implemented in the MM5 mesoscale meteorological mode for an observed SB case over the Swedish west coast. Various combinations from four different planetary boundary layer (PBL) schemes [Blackadar, Gayno-Seaman (GS), Eta, MRF], and two land surface model (LSM) schemes (SLAB, Noah) with different complexity are designed to simulate a typical SB case over the Swedish west coast. The simulations are conducted using two-way interactively nested grids. Simulated 10-m winds are compared against observed near-surface wind data from the GOTE2001 campaign to examine the diurnal cycle of wind direction and speed for SB timing. The SB (vertical) circulation is also compared in the different experiments. The results show that the different combinations of PBL and LSM parameterization schemes result in different SB timing and vertical circulation characteristics. All experiments predict a delayed SB. The vertical component of the SB circulation varies in the experiments, among which the GS PBL scheme produces the strongest SB circulation. Evident differences between the SLAB and Noah LSMs are also found, especially in maximum of updraft and downdraft velocities of the SB vertical circulation. The results have significant implications for convective initiation, air quality studies and other environmental problems in coastal areas.

567891011 22 - 24 of 37
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.9
|