Change search
Refine search result
2345 201 - 210 of 210
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 201. Turpin, O C
    et al.
    Caves, R G
    Ferguson, R I
    Johansson, Barbro
    SMHI, Professional Services.
    Verification of simulated snow cover in an Arctic basin using satellite-derived snow-cover maps2000In: ANNALS OF GLACIOLOGY, VOL 31, 2000, 2000, p. 391-396Conference paper (Refereed)
    Abstract [en]

    Time series of Earth observation (EO) data (Landsat Thematic Mapper (TM), U.S. National Oceanic and Atmospheric Administration Advanced Very High Resolution Radiometer (NOAA AVHRR) and European Remote-sensing Satellite synthetic-aperture radar (ERS SAR)) were obtained for a 2250 km(2) mountainous basin in northern Sweden to validate snow-cover area (SCA) estimates produced by a conceptual model (HBV) during three melt. seasons. SCA depletion curves derived for each image type, and coincident images, reveal that the SCA estimate varies with the sensor. Discrepancies betweenc TM and AVHRR appear to be an effect of spatial resolution. However, differences between TM and SAR are not simply related. Since more AVHRR than TM data were available, a TM-equivalent SCA was derived from AVHRR by relating TM SCA to AVHRR channel 1 reflectance. The TM-equivalent SCA was used to test SCA simulated by HBV for the 1992 melt season. Although the modelled and TM-equivalent SCA were in reasonable agreement, the modelled SCA declined faster than the TM-equivalent SCA. Partial recalibration of model parameters controlling snowpack accumulation improved the match between the modelled and EO-derived SCA decline. The recalibrated parameters were verified using SCA maps generated for the 1996 and 1998 melt seasons. The adjusted parameter sets had little effect on the Nash-Sutcliffe R-2 runoff fit but improved the volume fit in all three years.

  • 202.
    Wern, Lennart
    et al.
    SMHI, Core Services.
    Fredriksson, Ulf
    SMHI, Core Services.
    Ring, Sture
    SMHI, Professional Services.
    Spridningsberäkningar för lösningsmedel i Tidaholm1986Report (Other academic)
  • 203.
    Wern, Lennart
    et al.
    SMHI, Core Services.
    Kindell, Sven
    SMHI, Professional Services.
    Robertson, Lennart
    SMHI, Research Department, Air quality.
    Luktberäkningar för AB ELMO i Flen1986Report (Other academic)
  • 204.
    Wern, Lennart
    et al.
    SMHI, Core Services.
    Ring, Sture
    SMHI, Professional Services.
    Spridningsberäkningar för ny ugn, SSAB II1986Report (Other academic)
  • 205.
    Wern, Lennart
    et al.
    SMHI, Core Services.
    Ring, Sture
    SMHI, Professional Services.
    Spridningsberäkningar för Västhamns-verket HKV1 i Helsingborg1986Report (Other academic)
  • 206.
    Wern, Lennart
    et al.
    SMHI, Core Services.
    Ring, Sture
    SMHI, Professional Services.
    Spridningsberäkningar, SSAB1986Report (Other academic)
  • 207.
    Wetterhall, Fredrik
    et al.
    SMHI, Research Department, Hydrology.
    Graham, Phil
    SMHI, Research Department, Climate research - Rossby Centre.
    Andreasson, Johan
    SMHI, Professional Services.
    Rosberg, Jörgen
    SMHI, Research Department, Hydrology.
    Yang, Wei
    SMHI, Research Department, Hydrology.
    Using ensemble climate projections to assess probabilistic hydrological change in the Nordic region2011In: Natural hazards and earth system sciences, ISSN 1561-8633, E-ISSN 1684-9981, Vol. 11, no 8, p. 2295-2306Article in journal (Refereed)
    Abstract [en]

    Assessing hydrological effects of global climate change at local scales is important for evaluating future hazards to society. However, applying climate model projections to local impact models can be difficult as outcomes can vary considerably between different climate models, and including results from many models is demanding. This study combines multiple climate model outputs with hydrological impact modelling through the use of response surfaces. Response surfaces represent the sensitivity of the impact model to incremental changes in climate variables and show probabilies for reaching a priori determined thresholds. Response surfaces were calculated using the HBV hydrological model for three basins in Sweden. An ensemble of future climate projections was then superimposed onto each response surface, producing a probability estimate for exceeding the threshold being evaluated. Site specific impacts thresholds were used where applicable. Probabilistic trends for future change in hazards or potential can be shown and evaluated. It is particularly useful for visualising the range of probable outcomes from climate models and can easily be updated with new results as they are made available.

  • 208. Wilk, J.
    et al.
    Andersson, Lotta
    SMHI, Core Services. SMHI, Research Department, Hydrology.
    Graham, Phil
    SMHI, Professional Services.
    Wikner, J. J.
    Mokwatlo, S.
    Petja, B.
    From forecasts to action - What is needed to make seasonal forecasts useful for South African smallholder farmers?2017In: International Journal of Disaster Risk Reduction, E-ISSN 2212-4209, Vol. 25, p. 202-211Article in journal (Refereed)
  • 209.
    Yang, Wei
    et al.
    SMHI, Research Department, Hydrology.
    Andreasson, Johan
    SMHI, Professional Services.
    Graham, Phil
    SMHI, Research Department, Climate research - Rossby Centre.
    Olsson, Jonas
    SMHI, Research Department, Hydrology.
    Rosberg, Jörgen
    SMHI, Research Department, Hydrology.
    Wetterhall, Fredrik
    SMHI, Research Department, Hydrology.
    Distribution-based scaling to improve usability of regional climate model projections for hydrological climate change impacts studies2010In: HYDROLOGY RESEARCH, ISSN 1998-9563, Vol. 41, no 3-4, p. 211-229Article in journal (Refereed)
    Abstract [en]

    As climate change could have considerable influence on hydrology and corresponding water management, appropriate climate change inputs should be used for assessing future impacts. Although the performance of regional climate models (RCMs) has improved over time, systematic model biases still constrain the direct use of RCM output for hydrological impact studies. To address this, a distribution-based scaling (DBS) approach was developed that adjusts precipitation and temperature from RCMs to better reflect observations. Statistical properties, such as daily mean, standard deviation, distribution and frequency of precipitation days, were much improved for control periods compared to direct RCM output. DBS-adjusted precipitation and temperature from two IPCC Special Report on Emissions Scenarios (SRESA1B) transient climate projections were used as inputs to the HBV hydrological model for several river basins in Sweden for the period 1961-2100. Hydrological results using DBS were compared to results with the widely-used delta change (DC) approach for impact studies. The general signal of a warmer and wetter climate was obtained using both approaches, but use of DBS identified differences between the two projections that were not seen with DC. The DBS approach is thought to better preserve the future variability produced by the RCM, improving usability for climate change impact studies.

  • 210.
    Yang, Wei
    et al.
    SMHI, Research Department, Hydrology.
    Gardelin, Marie
    SMHI, Professional Services.
    Olsson, Jonas
    SMHI, Research Department, Hydrology.
    Bosshard, Thomas
    SMHI, Research Department, Hydrology.
    Multi-variable bias correction: application of forest fire risk in present and future climate in Sweden2015In: Natural hazards and earth system sciences, ISSN 1561-8633, E-ISSN 1684-9981, Vol. 15, no 9, p. 2037-2057Article in journal (Refereed)
    Abstract [en]

    As the risk of a forest fire is largely influenced by weather, evaluating its tendency under a changing climate becomes important for management and decision making. Currently, biases in climate models make it difficult to realistically estimate the future climate and consequent impact on fire risk. A distribution-based scaling (DBS) approach was developed as a post-processing tool that intends to correct systematic biases in climate modelling outputs. In this study, we used two projections, one driven by historical reanalysis (ERA40) and one from a global climate model (ECHAM5) for future projection, both having been dynamically down-scaled by a regional climate model (RCA3). The effects of the post-processing tool on relative humidity and wind speed were studied in addition to the primary variables precipitation and temperature. Finally, the Canadian Fire Weather Index system was used to evaluate the influence of changing meteorological conditions on the moisture content in fuel layers and the fire-spread risk. The forest fire risk results using DBS are proven to better reflect risk using observations than that using raw climate outputs. For future periods, southern Sweden is likely to have a higher fire risk than today, whereas northern Sweden will have a lower risk of forest fire.

2345 201 - 210 of 210
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.7
|