Change search
Refine search result
3132333435 1651 - 1700 of 1714
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1651. Weyhenmeyer, Gesa A.
    et al.
    Froberg, Mats
    Karltun, Erik
    Khalili, Maria
    Kothawala, Dolly
    Temnerud, Johan
    SMHI, Research Department, Hydrology.
    Tranvik, Lars J.
    Selective decay of terrestrial organic carbon during transport from land to sea2012In: Global Change Biology, ISSN 1354-1013, E-ISSN 1365-2486, Vol. 18, no 1, p. 349-355Article in journal (Refereed)
    Abstract [en]

    Numerous studies have estimated carbon exchanges at the landatmosphere interface, more recently also including estimates at the freshwateratmosphere interface. Less attention has been paid to lateral carbon fluxes, in particular to the fate of terrestrial carbon during transport from soils via surface waters to the sea. Using extensive datasets on soil, lake and river mouth chemistry of the boreal/hemiboreal region we determined organic carbon (OC) stocks of the O horizon from catchment soils, annual OC transports through more than 700 lakes (OClakeflux) and the total annual OC transport at Sweden's 53 river mouths (OCseaflux). We show here that a minimum of 0.030.87% yr(-1) of the OC soil stocks need to be exported to lakes in order to sustain the annual OClakeflux. Across Sweden we estimated a total OClakeflux of similar to 2.9 Mtonne yr(-1), which corresponds to similar to 10% of Sweden's total terrestrial net ecosystem production, and it is over 50% higher than the total OCseaflux. The OC loss during transport to the sea follows a simple exponential decay with an OC half-life of similar to 12 years. Water colour, a proxy often used for dissolved humic matter, is similarly lost exponentially but about twice as fast as OC. Thus, we found a selective loss of the coloured portion of soil-derived OC during its transport through inland waters, prior to being discharged into the sea. The selective loss is water residence time dependent, resulting in that the faster the water flows through the landscape the less OC and colour is lost. We conclude that increases in runoff will result in less efficient losses of OC, and particularly of colour, if the time for OC transformations in the landscape shortens. Consequently, OC reaching the sea is likely to become more coloured, and less processed, which can have far-reaching effects on biogeochemical cycles.

  • 1652. White, Christopher J.
    et al.
    Carlsen, Henrik
    Robertson, Andrew W.
    Klein, Richard J. T.
    Lazo, Jeffrey K.
    Kumar, Arun
    Vitart, Frederic
    de Perez, Erin Coughlan
    Ray, Andrea J.
    Murray, Virginia
    Bharwani, Sukaina
    MacLeod, Dave
    James, Rachel
    Fleming, Lora
    Morse, Andrew P.
    Eggen, Bernd
    Graham, Richard
    Kjellström, Erik
    SMHI, Research Department, Climate research - Rossby Centre.
    Becker, Emily
    Pegion, Kathleen V.
    Holbrook, Neil J.
    McEvoy, Darryn
    Depledge, Michael
    Perkins-Kirkpatrick, Sarah
    Brown, Timothy J.
    Street, Roger
    Jones, Lindsey
    Remenyi, Tomas A.
    Hodgson-Johnston, Indi
    Buontempo, Carlo
    Lamb, Rob
    Meinke, Holger
    Arheimer, Berit
    SMHI, Research Department, Hydrology.
    Zebiak, Stephen E.
    Potential applications of subseasonal-to-seasonal (S2S) predictions2017In: Meteorological Applications, ISSN 1350-4827, E-ISSN 1469-8080, Vol. 24, no 3, p. 315-325Article in journal (Refereed)
  • 1653. Wibig, Joanna
    et al.
    Maraun, Douglas
    Benestad, Rasmus
    Kjellström, Erik
    SMHI, Research Department, Climate research - Rossby Centre.
    Lorenz, Philip
    Christensen, Ole Bossing
    Projected Change-Models and Methodology2015Chapter in book (Other academic)
    Abstract [en]

    General (global) circulation models (GCMs) are a useful tool for studying how climate may change in the future. Although GCMs have high temporal resolution, their spatial resolution is low. To simulate the future climate of the Baltic Sea region, it is necessary to downscale GCM data. This chapter describes the two conceptually different ways of downscaling: regional climate models (RCMs) nested in GCMs and using empirical and/or statistical relations between large-scale variables from GCMs and small-scale variables. There are many uncertainties in climate models, including uncertainty related to future land use and atmospheric greenhouse gas concentrations, limits on the amount of input data and their accuracy, and the chaotic nature of weather. The skill of methods for describing regional climate futures is also limited by natural climate variability. For the Baltic Sea area, the lack of an oceanic component in RCMs and poor representation of forcing by aerosols and changes in land use are major limitations.

  • 1654. Widmann, Martin
    et al.
    Bedia, Joaquin
    Gutierrez, Jose M.
    Bosshard, Thomas
    SMHI, Research Department, Hydrology.
    Hertig, Elke
    Maraun, Douglas
    Casado, Maria J.
    Ramos, Petra
    Cardoso, Rita M.
    Soares, Pedro M. M.
    Ribalaygua, Jamie
    Page, Christian
    Fischer, Andreas M.
    Herrera, Sixto
    Huth, Radan
    Validation of spatial variability in downscaling results from the VALUE perfect predictor experiment2019In: International Journal of Climatology, ISSN 0899-8418, E-ISSN 1097-0088, Vol. 39, no 9, p. 3819-3845Article in journal (Refereed)
  • 1655.
    Wilcke, Renate
    et al.
    SMHI, Research Department, Climate research - Rossby Centre.
    Bärring, Lars
    SMHI, Research Department, Climate research - Rossby Centre.
    Selecting regional climate scenarios for impact modelling studies2016In: Environmental Modelling & Software, ISSN 1364-8152, E-ISSN 1873-6726, Vol. 78, p. 191-201Article in journal (Refereed)
    Abstract [en]

    In climate change research ensembles of climate simulations are produced in an attempt to cover the uncertainty in future projections. Many climate change impact studies face difficulties using the full number of simulations available, and therefore often only subsets are used. Until now such subsets were chosen based on their representation of temperature change or by accessibility of the simulations. By using more specific information about the needs of the impact study as guidance for the clustering of simulations, the subset fits the purpose of climate change impact research more appropriately. Here, the sensitivity of such a procedure is explored, particularly with regard to the use of different climate variables, seasons, and regions in Europe. While temperature dominates the clustering, the resulting selection is influenced by all variables, leading to the conclusion that different subsets fit different impact studies best. (C) 2016 The Authors. Published by Elsevier Ltd.

  • 1656. Wilk, J.
    et al.
    Andersson, Lotta
    SMHI, Core Services. SMHI, Research Department, Hydrology.
    Graham, Phil
    SMHI, Professional Services.
    Wikner, J. J.
    Mokwatlo, S.
    Petja, B.
    From forecasts to action - What is needed to make seasonal forecasts useful for South African smallholder farmers?2017In: International Journal of Disaster Risk Reduction, E-ISSN 2212-4209, Vol. 25, p. 202-211Article in journal (Refereed)
  • 1657.
    Wilk, Julie
    et al.
    SMHI, Research Department, Hydrology.
    Andersson, Lotta
    SMHI, Core Services.
    Warburton, Michele
    Adaptation to climate change and other stressors among commercial and small-scale South African farmers2013In: Regional Environmental Change, ISSN 1436-3798, E-ISSN 1436-378X, Vol. 13, no 2, p. 273-286Article in journal (Refereed)
    Abstract [en]

    Commercial and small-scale farmers in South Africa are exposed to many challenges. Interviews with 44 farmers in the upper Thukela basin, KwaZulu-Natal, were conducted to identify common and specific challenges for the two groups and adaptive strategies for dealing with the effects of climate and other stressors. This work was conducted as part of a larger participatory project with local stakeholders to develop a local adaptation plan for coping with climate variability and change. Although many challenges related to exposure to climate variability and change, weak agricultural policies, limited governmental support, and theft were common to both farming communities, their adaptive capacities were vastly different. Small-scale farmers were more vulnerable due to difficulties to finance the high input costs of improved seed varieties and implements, limited access to knowledge and agricultural techniques for water and soil conservation and limited customs of long-term planning. In addition to temperature and drought-related challenges, small-scale farmers were concerned about soil erosion, water logging and livestock diseases, challenges for which the commercial farmers already had efficient adaptation strategies in place. The major obstacle hindering commercial farmers with future planning was the lack of clear directives from the government, for example, with regard to issuing of water licences and land reform. Enabling agricultural communities to procure sustainable livelihoods requires implementation of strategies that address the common and specific challenges and strengthen the adaptive capacity of both commercial and small-scale farmers. Identified ways forward include knowledge transfer within and across farming communities, clear governmental directives and targeted locally adapted finance programmes.

  • 1658. Wilk, Julie
    et al.
    Hjerpe, Mattias
    Yang, Wei
    SMHI, Research Department, Hydrology.
    Fan, Hua
    Farm-scale adaptation under extreme climate and rapid economic transition2015In: Environment, Development and Sustainability, ISSN 1387-585X, E-ISSN 1573-2975, Vol. 17, no 3, p. 393-407Article in journal (Refereed)
    Abstract [en]

    This paper aims to analyse what shapes farmers' vulnerability and adaptation strategies in the context of rapid change. Xinjiang is semi-arid, with extremes of temperature, growing seasons and winds. Favourable socioeconomic conditions have boosted the wellbeing of farmers in the past decades. Interviews with forty-seven farmers led to the categorization of five groups according to the predominant type of farming activity: animal farmers, government farmers (leasing land from the Xinjiang Production and Construction Group), crop farmers, agri-tourism operators and entrepreneurs. High government support has aided farmers to deal with climate challenges, through advanced technology, subsidies and loans. Farmers, however, greatly contribute to their own high adaptive capacity through inventiveness, flexibility and a high knowledge base. Although the future climate will entail hotter temperatures, farmers can be seen as generally well equipped to deal with these challenges because of the high adaptive capacity they currently have and utilize. Those that are most vulnerable are those that have difficulty to access credit e.g. animal farmers and those that do not want to change their agricultural systems e.g. from pastoral lifestyles to include tourism-based operations.

  • 1659.
    Wilk, Julie
    et al.
    SMHI, Research Department, Hydrology.
    Jonsson, Anna
    SMHI, Core Services.
    Rydhagen, Birgitta
    Rani, Ashu
    Kumar, Arun
    The perspectives of the urban poor in climate vulnerability assessments - The case of Kota, India2018In: Urban Climate, ISSN 2212-0955, E-ISSN 2212-0955, Vol. 24, p. 633-642Article in journal (Refereed)
  • 1660. Willems, P.
    et al.
    Arnbjerg-Nielsen, K.
    Olsson, Jonas
    SMHI, Research Department, Hydrology.
    Nguyen, V. T. V.
    Climate change impact assessment on urban rainfall extremes and urban drainage: Methods and shortcomings2012In: Atmospheric research, ISSN 0169-8095, E-ISSN 1873-2895, Vol. 103, p. 106-118Article in journal (Refereed)
    Abstract [en]

    Cities are becoming increasingly vulnerable to flooding because of rapid urbanization, installation of complex infrastructure, and changes in the precipitation patterns caused by anthropogenic climate change. The present paper provides a critical review of the current state-of-the-art methods for assessing the impacts of climate change on precipitation at the urban catchment scale. Downscaling of results from global circulation models or regional climate models to urban catchment scales are needed because these models are not able to describe accurately the rainfall process at suitable high temporal and spatial resolution for urban drainage studies. The downscaled rainfall results are however highly uncertain, depending on the models and downscaling methods considered. This uncertainty becomes more challenging for rainfall extremes since the properties of these extremes do not automatically reflect those of average precipitation. In this paper, following an overview of some recent advances in the development of innovative methods for assessing the impacts of climate change on urban rainfall extremes as well as on urban hydrology and hydraulics, several existing difficulties and remaining challenges in dealing with this assessment are discussed and further research needs are described. (C) 2011 Elsevier B.V. All rights reserved.

  • 1661. Willers, Saskia M.
    et al.
    Eriksson, Charlotta
    Gidhagen, Lars
    SMHI, Research Department, Air quality.
    Nilsson, Mats E.
    Pershagen, Goran
    Bellander, Tom
    Fine and coarse particulate air pollution in relation to respiratory health in Sweden2013In: European Respiratory Journal, ISSN 0903-1936, E-ISSN 1399-3003, Vol. 42, no 4, p. 924-934Article in journal (Refereed)
    Abstract [en]

    Health effects have repeatedly been associated with residential levels of air pollution. However, it is difficult to disentangle effects of long-term exposure to locally generated and long-range transported pollutants, as well as to exhaust emissions and wear particles from road traffic. We aimed to investigate effects of exposure to particulate matter fractions on respiratory health in the Swedish adult population, using an integrated assessment of sources at different geographical scales. The study was based on a nationwide environmental health survey performed in 2007, including 25 851 adults aged 18-80 years. Individual exposure to particulate matter at residential addresses was estimated by dispersion modelling of regional, urban and local sources. Associations between different size fractions or source categories and respiratory outcomes were analysed using multiple logistic regression, adjusting for individual and contextual confounding. Exposure to locally generated wear particles showed associations for blocked nose or hay fever, chest tightness or cough, and restricted activity days with odds ratios of 1.5-2 per 10-mu g.m(-3) increase. Associations were also seen for locally generated combustion particles, which disappeared following adjustment for exposure to wear particles. In conclusion, our data indicate that long-term exposure to locally generated road wear particles increases the risk of respiratory symptoms in adults.

  • 1662. Willers, Saskia M.
    et al.
    Eriksson, Charlotta
    Gidhagen, Lars
    SMHI, Research Department, Air quality.
    Nilsson, Mats E.
    Pershagen, Goran
    Bellander, Tom
    Traffic Related Air Pollution and Respiratory Health in Sweden: The Roadside Study2009In: EPIDEMIOLOGY, ISSN 1044-3983, Vol. 20, no 6, p. S29-S30Article in journal (Other academic)
  • 1663.
    Willén, Ulrika
    SMHI, Research Department, Climate research - Rossby Centre.
    Comparison of Model and Cloud Radar Derived Cloud Vertical Structure and Overlap for the BALTEX BRIDGE Campaign.2004In: Fourth Study Conference on BALTEX: Conference Proceedings / [ed] Hans-Jörg Isemer, 2004, p. 18-Conference paper (Other academic)
  • 1664.
    Willén, Ulrika
    SMHI, Research Department, Climate research - Rossby Centre.
    Comparison of modeled and radar measured cloud fraction and overlap2005In: Extended abstracts of a WMO/WCRP-sponsored Regional-Scale Climate Modelling Workshop [Elektronisk resurs] : high-resolution climate modelling : assessment, added value and applications, Lund, Sweden, 29 March-2 April 2004 / [ed] Lars Bärring & René Laprise, Lund: Department of Physical Geography & Ecosystems Analysis, Lund University , 2005, p. 128-Conference paper (Other academic)
  • 1665.
    Willén, Ulrika
    SMHI, Research Department, Climate research - Rossby Centre.
    Preliminary use of CM-SAF cloud and radiation products for evaluation of regional climate simulations: Visiting Scientist Report Climate Monitoring SAF (CM-SAF)2008Report (Other academic)
    Abstract [en]

    We have compared monthly mean cloud and radiation fields from the EUMETSAT Climate Monitoring SAF (CM-SAF, http://www.cmsaf.eu) data base with the clouds and radiation simulated by the Rossby Centre regional climate model (RCA) and by the European Centre Medium range Weather Forecast model (ECMWF) over Europe and North Africa for the time period January 2005 to December 2006.ECMWF and RCA overestimate the cloud fraction by 20% over snow covered regions in the north east of Europe and overestimate the surface downwelling longwave radiation (SDL) by 20-40W/m2 and surface outgoing longwave radiation by 10-30W/m2. The RCA-simulated clouds have too much cloud water in northern Europe in summer and in autumn and they therefore reflect too much shortwave radiation at the TOA (TRS) and this also leads to an underestimation of the incoming shortwave radiation (SIS) at the surface. Over most of Europe and over sea ECMWF (all year) and RCA (in winter-spring) underestimate the cloud fraction which could explain a corresponding underestimate of TRS, overestimate of SIS and underestimate of SDL. The satellites overestimate cloud cover over sea due to problems in the treatment of sub-pixel cloudiness and therefore the models underestimates are larger over sea. Mainly RCA but also ECMWF overestimate cloud fraction on top of mountains and underestimate it along mountain ranges and have corresponding differences in the TOA and surface radiation fluxes compared to the CM-SAF data.Over North Africa RCA underestimates TRS by -11W/m2 and overestimates the TOA emitted thermal radiation (TET) by 8W/m2. ECMWF underestimates TRS by -28W/m2 and overestimates TET by 14W/m2. These errors are similar to what has been found for many other global models and are attributed to clear sky errors either due to too high surface temperatures, errors in emissivity, albedo or lack of aerosols. Adding clear and cloudy skies radiation fluxes to the CM-SAF data base would help us to understand the reasons for ECMWF and RCA errors. The polar orbiting satellite retrieval for 2005-2006 erroneously overestimated cloud fraction over North Africa, which also affects the CM-SAF derived surface radiation fluxes.

  • 1666.
    Willén, Ulrika
    et al.
    SMHI, Research Department, Climate research - Rossby Centre.
    Crewell, S.
    Comparison of model and cloud radar derived cloud vertical structure and overlap.2004In: 14th International Conference on Clouds and Precipitation(ICCP), 2004, p. 1434-1437Conference paper (Other academic)
  • 1667.
    Willén, Ulrika
    et al.
    SMHI, Research Department, Climate research - Rossby Centre.
    Crewell, S
    Baltink, H K
    Sievers, O
    Assessing model predicted vertical cloud structure and cloud overlap with radar and lidar ceilometer observations for the Baltex Bridge Campaign of CLIWA-NET2005In: Atmospheric research, ISSN 0169-8095, E-ISSN 1873-2895, Vol. 75, no 3, p. 227-255Article in journal (Refereed)
    Abstract [en]

    The cloud vertical distribution and overlap of four large-scale models operating at different horizontal and vertical resolutions have been assessed using radar and lidar observations from the Baltex Bridge Campaign of CLIWA-NET. The models range from the global European Centre for Medium range Weather Forecast (ECMWF) model, to the Regional Atmospheric Climate Model (RACMO) and the Rossby Centre Atmospheric (RCA) regional climate model, to the non-hydrostatic meso-scale Lokal Model (LM). Different time averaging periods for the radar data were used to estimate the uncertainty of the point-to-space transformations of the observations. Relative to the observations, all models underestimated the height of the lowest cloud base. Clouds occurred more frequently in the models but with smaller cloud fractions below 7 km. The findings confirm previous cloud radar studies which found that models overestimate cloud fractions above 7 km. Radar-observed clouds were often thinner than the model vertical resolutions, which can have serious implications on model cloud overlap and radiation fluxes. The radar-derived cloud overlap matrix, which takes into account the overlap of all vertical layers, was found to be close to maximum-random overlap. Using random overlap for vertically continuous clouds with vertical gradients in cloud fraction larger than 40-50% per kilometre gave the best fit to the data. The gradient approach could be improved by making it resolution- and cloud system-dependent. Previous cloud radar overlap studies have considered the overlap of two cloud layers as a function of maximum and random overlap. Here, it was found that the two-layer overlap could be modelled by a mixture of maximum and minimum overlap. (c) 2005 Elsevier B.V. All rights reserved.

  • 1668.
    Willén, Ulrika
    et al.
    SMHI, Research Department, Climate research - Rossby Centre.
    Jones, Colin
    SMHI, Research Department, Climate research - Rossby Centre.
    Baltink, Henk Klein
    Quante, Markus
    COMPARISON OF MODEL AND CLOUD RADAR DERIVED CLOUD OVERLAP2002Conference paper (Other academic)
  • 1669. Winsor, P
    et al.
    Rodhe, J
    Omstedt, Anders
    SMHI, Research Department, Oceanography.
    Baltic Sea ocean climate: an analysis of 100 yr of hydrographic data with focus on the freshwater budget2001In: Climate Research (CR), ISSN 0936-577X, E-ISSN 1616-1572, Vol. 18, no 1-2, p. 5-15Article in journal (Refereed)
    Abstract [en]

    The Baltic Sea climate is analysed based upon long-term oceanographic measurements. The objective of the work is to study the natural variability of present day climate with focus on the freshwater budget. The results are designed to be used for validation of climate models and for discrimination of the significance of modelled climate change scenarios. Almost 100 yr of observations are used in the study, including data for river runoff, water exchange through the Danish Straits (as calculated from river runoff and from sea level data from the Kattegat), salinity data from the Baltic Sea and the Kattegat, and oxygen content in the deep Baltic Sea. The analyses illustrate that freshwater supply to the Baltic shows large variations on time scales up to several decades. The long-term variations in freshwater storage are closely correlated to accumulated changes in river runoff. This indicates strong positive feedback between the amount of outflowing surface water from the Baltic Sea and the salinity of the inflowing Kattegat water. One implication of the study is that climate control simulations must cover several decades, probably up to 100 yr in order to capture the natural variability of present day climate. Also, models designed to study climate change for the Baltic Sea probably need to start integrating from the present day.

  • 1670. Winterdahl, Mattias
    et al.
    Laudon, Hjalmar
    Lyon, Steve W.
    Pers, Charlotta
    SMHI, Research Department, Hydrology.
    Bishop, Kevin
    Sensitivity of stream dissolved organic carbon to temperature and discharge: Implications of future climates2016In: Journal of Geophysical Research - Biogeosciences, ISSN 2169-8953, E-ISSN 2169-8961, Vol. 121, no 1, p. 126-144Article in journal (Refereed)
    Abstract [en]

    Dissolved organic carbon (DOC) is a significant constituent in aquatic ecosystems with concentrations in streams influenced by both temperature and water flow pathway dynamics associated with changes in discharge (streamflow). We investigated the sensitivity of DOC concentrations in 12 high-latitude headwater streams to changes in temperature and discharge using a mathematical model. The implications of differences in sensitivities were explored by using downscaled projections of air temperature and discharge to simulate possible trajectories of DOC concentrations in a changing climate. We found two distinct responses: (i) catchments where stream DOC sensitivity was high to temperature but low to discharge and (ii) catchments where stream DOC sensitivity was low to temperature but high to discharge. Streams with strong seasonal DOC dynamics were more sensitive to temperature changes than nonseasonal systems. In addition, stream DOC sensitivity to discharge was strongly correlated with vertical soil water DOC differences in the near-stream zone. Simulations of possible future changes in DOC concentrations indicated median increases of about 4-24% compared to current levels when using projections of air temperature and discharge but even larger increases were observed for base flow concentrations (13-42%). Streams with high-temperature sensitivity showed the largest increases in DOC concentrations. Our results suggest that future climatic changes could bring significant increases in surface water DOC concentrations in boreal and hemiboreal areas but that the response ultimately is dependent on vertical soil solution DOC differences and soil organic carbon distribution.

  • 1671. Winterdahl, Mattias
    et al.
    Temnerud, Johan
    SMHI, Research Department, Hydrology.
    Futter, Martyn N.
    Lofgren, Stefan
    Moldan, Filip
    Bishop, Kevin
    Riparian Zone Influence on Stream Water Dissolved Organic Carbon Concentrations at the Swedish Integrated Monitoring Sites2011In: Ambio, ISSN 0044-7447, E-ISSN 1654-7209, Vol. 40, no 8, p. 920-930Article in journal (Refereed)
    Abstract [en]

    Short-term variability in stream water dissolved organic carbon (DOC) concentrations is controlled by hydrology, climate and atmospheric deposition. Using the Riparian flow-concentration Integration Model (RIM), we evaluated factors controlling stream water DOC in the Swedish Integrated Monitoring (IM) catchments by separating out hydrological effects on stream DOC dynamics. Model residuals were correlated with climate and deposition-related drivers. DOC was most strongly correlated to water flow in the northern catchment (Gammtratten). The southern Aneboda and Kindla catchments had pronounced seasonal DOC signals, which correlated weakly to flow. DOC concentrations at GAyenrdsjon increased, potentially in response to declining acid deposition. Soil temperature correlated strongly with model residuals at all sites. Incorporating soil temperature in RIM improved model performance substantially (20-62% lower median absolute error). According to the simulations, the RIM conceptualization of riparian processes explains between 36% (Kindla) and 61% (Aneboda) of the DOC dynamics at the IM sites.

  • 1672.
    Wittgren, Hans Bertil
    SMHI, Research Department.
    Kvävetransport till Slätbaken från Söderköpingsåns avrinningsområde1995Report (Other academic)
  • 1673.
    Wittgren, Hans Bertil
    et al.
    SMHI, Research Department.
    Arheimer, Berit
    SMHI, Research Department, Hydrology.
    Source apportionment of riverine nitrogen transport based on catchment modelling1996In: Water Science and Technology, ISSN 0273-1223, E-ISSN 1996-9732, Vol. 33, no 4-5, p. 109-115Article in journal (Refereed)
    Abstract [en]

    Source apportionment of river substance transport, i.e. estimation of how much each source in each subbasin contributes to the river-mouth transport is a vital step in achieving the most efficient management practices to reduce pollutant loads to the sea. In this study, the spatially lumped (at sub-catchment level), semiempirical PULSE hydrological model, with a nitrogen routine coupled to if was used to perform source apportionment of nitrogen transport in the Soderkopingsan river basin (882 km(2)) in south-eastern Sweden, for the period 1991-93. The river basin was divided into 28 subbasins and the following sources were considered: land leakage from the categories forest arable and ley/pasture; point sources, and; atmospheric deposition on lake surfaces. The calibrated model yielded an explained variance of 60%, based on comparison of measured and modelled river nitrogen (Total N) concentrations. Eight subbasins, with net contributions to the river-mouth transport exceeding 3 kg ha(-1) yr(-1), were identified as the most promising candidates for cost efficient nitrogen management. The other 20 subbasins all had net contributions below 3 kg ha(-1) yr(-1). Arable land contributed 63% of the nitrogen transport at the river mouth and would thus be in focus for management measures. However, point sources (18% contribution to net transport) should also be considered due to their relatively high accessibility for removal measures (high concentrations). E.g., the most downstream subbasin, with the largest wastewater treatment plant in the whole river basin, had a net contribution of 16 kg ha(-1) yr(-1). This method for source apportionment may provide authorities with quantitative information about where in a river basin, and at which sources, they should focus their attention. However, once this is done, an analysis with higher resolution has to be performed in each of the interesting subbasins, before decisions on actual management measures can be taken. Copyright (C) 1996 IAWQ.

  • 1674.
    Wittgren, Hans Bertil
    et al.
    SMHI, Research Department.
    Tobiason, S
    Nitrogen removal from pretreated wastewater in surface flow wetlands1995In: Water Science and Technology, ISSN 0273-1223, E-ISSN 1996-9732, Vol. 32, no 3, p. 69-78Article in journal (Refereed)
    Abstract [en]

    The wastewater treatment plant in the town of Oxelosund (12,500 inhabitants), Sweden, has mechanical and chemical treatment for removal of BOD and phosphorus. With the aim to achieve 50% nitrogen removal, a surface flow wetland system of 21 ha was created as a final step during 1993. It consists of 5 cells, where 2+2 are operated in parallel with a final common cell, This allows intermittent filling and emptying, the goal of which is to promote both nitrification and denitrification for a design flow of 6000 m(3) day(-1). During the first year of operation, August 1993 to July 1994, the wetland removed 720 kg ha(-1) of total nitrogen from the load of 1810 kg ha(-1). Ammonium-N was the dominant fraction at the inlet as well as at the outlet, 79% and 90% of total nitrogen, respectively. The large fraction of NH4+ at the outlet showed that nitrification was the limiting step. An intensive monitoring effort in May 1994 indicated that neither wastewater toxicity nor oxygen deficiency were likely to limit nitrification. Instead, sub-optimal hydraulic loading conditions; a lack of suitable surfaces for ion exchange of NH4+ as well as for attachment of nitrifiers; and phosphorus deficiency, were considered potentially important factors in limiting nitrification. In addition to nitrogen removal, the wetland system reduced total phosphorus, BOD7 and E. coli (44 degrees C) to very low levels at the outlet.

  • 1675. Woick, H
    et al.
    Dewitte, S
    Feijt, A
    Gratzki, A
    Hechler, P
    Hollmann, R
    Karlsson, Karl-Göran
    SMHI, Research Department, Atmospheric remote sensing.
    Laine, V
    Lowe, P
    Nitsche, H
    Werscheck, M
    Wollenweber, G
    The satellite application facility on climate monitoring2002In: EARTH'S ATMOSPHERE, OCEAN AND SURFACE STUDIES, 2002, no 11, p. 2405-2410Conference paper (Refereed)
    Abstract [en]

    The Satellite Application Facility on Climate Monitoring is a joint project of the National Meteorological Services and other institutes from Belgium, Finland, Germany, Sweden and The Netherlands. The objective of the project is to set up a system to provide atmospheric and oceanographic data sets from (primarily) operational geostationary and polar orbiting meteorological satellites for climate monitoring, research and applications at regional European scale, for some products on a global scale. Initial operational SAF products are related to clouds, radiation budget, ocean status and water vapour content in the atmosphere. SAF operations are foreseen to start in 2004. (C) 2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  • 1676. Wolters, L
    et al.
    Cats, G
    Gustafsson, Nils
    SMHI, Research Department, Meteorology.
    Wilhelmsson, T
    Data-parallel numerical methods in a weather forecast model1995In: Applied Numerical Mathematics, ISSN 0168-9274, E-ISSN 1873-5460, Vol. 19, no 1-2, p. 159-171Article in journal (Refereed)
    Abstract [en]

    The results presented in this paper are part of a research project to investigate the possibilities to apply massively parallel architectures for numerical weather forecasting. Within numerical weather forecasting several numerical techniques are used to solve the model equations. This paper compares the performance of implementations on a MasPar system of two techniques, finite difference and spectral, that are adopted in the numerical weather forecasting model HIRLAM. The operational HIRLAM model is based on finite difference methods, while the spectral model is still in a research phase. Also the differences in relative performance of these methods on the MasPar and vector architectures will be discussed.

  • 1677. Worman, A.
    et al.
    Lindström, Göran
    SMHI, Research Department, Hydrology.
    Riml, Joakim
    SMHI, Research Department, Hydrology.
    The power of runoff2017In: Journal of Hydrology, ISSN 0022-1694, E-ISSN 1879-2707, Vol. 548, p. 784-793Article in journal (Refereed)
  • 1678. Worman, Anders
    et al.
    Lindström, Göran
    SMHI, Research Department, Hydrology.
    Akesson, Anna
    Riml, Joakim
    SMHI, Research Department, Hydrology.
    Drifting runoff periodicity during the 20th century due to changing surface water volume2010In: Hydrological Processes, ISSN 0885-6087, E-ISSN 1099-1085, Vol. 24, no 26, p. 3772-3784Article in journal (Refereed)
    Abstract [en]

    Fourier and wavelet analyses were used to reveal the dominant trends and coherence of a more than one-century-long time series of precipitation and discharge in several watersheds in Sweden, two of which were subjected to hydropower and intensive agriculture. During the 20th century, there was a gradual, significant drift of the dominant discharge periodicity in agricultural watersheds. This study shows that the steepness of the Fourier spectrum of runoff from the May to October period each year increased gradually during the century, which suggests a more predictable intra-annual runoff pattern (more apart from white-noise). In the agricultural watershed, the coherence spectrum of precipitation and runoff is generally high with a consistent white-noise relationship for precipitation during the 20th century, indicating that precipitation is not controlling the drift of the discharge spectrum. In the hydropower regulated watershed, there was a sudden decrease of the discharge spectrum slope when regulation commenced in the 1920s. This study develops a new theory in which the runoff spectrum is related to the hydraulic and hydro-morphological characteristics of the watershed. Using this theory, we explain the changes in runoff spectra in the two watersheds by the anthropogenic change in surface water volume and, hence, changes in kinematic wave celerity and water transit times. The reduced water volume in the agricultural watershed would also contribute to decreasing evaporation, which could explain a slightly increasing mean discharge during the 20th century despite the fact that precipitation was statistically constant in the area. Copyright (C) 2010 John Wiley & Sons, Ltd.

  • 1679. Wormbs, N.
    et al.
    Nilsson, A.E.
    Doescher, Ralf
    SMHI, Research Department, Climate research - Rossby Centre.
    Sörlin, S.
    The History of Emerging Arctic Climate Modelling, poster presented at the IPY final conference in Oslo2010Conference paper (Other academic)
  • 1680. Wramneby, Anna
    et al.
    Smith, Benjamin
    Samuelsson, Patrick
    SMHI, Research Department, Climate research - Rossby Centre.
    Hot spots of vegetation-climate feedbacks under future greenhouse forcing in Europe2010In: Journal of Geophysical Research - Atmospheres, ISSN 2169-897X, E-ISSN 2169-8996, Vol. 115, article id D21119Article in journal (Refereed)
    Abstract [en]

    We performed simulations of future biophysical vegetation-climate feedbacks with a regional Earth System Model, RCA-GUESS, interactively coupling a regional climate model and a process-based model of vegetation dynamics and biogeochemistry. Simulated variations in leaf area index and in the relative coverage of evergreen forest, deciduous forest, and open land vegetation in response to simulated climate influence atmospheric state via variations in albedo, surface roughness, and the partitioning of the land-atmosphere heat flux into latent and sensible components. The model was applied on a similar to 50 x 50 km grid over Europe under a future climate scenario. Three potential "hot spots" of vegetation-climate feedbacks could be identified. In the Scandinavian Mountains, reduced albedo resulting from the snow-masking effect of forest expansion enhanced the winter warming trend. In central Europe, the stimulation of photosynthesis and plant growth by "CO2 fertilization" mitigated warming, through a negative evapotranspiration feedback associated with increased vegetation cover and leaf area index. In southern Europe, increased summer dryness restricted plant growth and survival, causing a positive warming feedback through reduced evapotranspiration. Our results suggest that vegetation-climate feedbacks over the European study area will be rather modest compared to the radiative forcing of increased global CO2 concentrations but may modify warming projections locally, regionally, and seasonally, compared with results from traditional "off-line" regional climate models lacking a representation of the relevant feedback mechanisms.

  • 1681. Wu, Dong L.
    et al.
    Baum, Bryan A.
    Choi, Yong-Sang
    Foster, Michael J.
    Karlsson, Karl-Göran
    SMHI, Research Department, Atmospheric remote sensing.
    Heidinger, Andrew
    Poulslsen, Caroline
    Pavolonis, Michael
    Riedi, Jerome
    Roebeling, Robert
    Sherwood, Steven
    Thoss, Anke
    SMHI, Research Department, Atmospheric remote sensing.
    Watts, Philip
    TOWARD GLOBAL HARMONIZATION OF DERIVED CLOUD PRODUCTS2017In: Bulletin of The American Meteorological Society - (BAMS), ISSN 0003-0007, E-ISSN 1520-0477, Vol. 98, no 2, p. ES49-ES52Article in journal (Refereed)
  • 1682. Wu, Minchao
    et al.
    Schurgers, Guy
    Rummukainen, Markku
    SMHI, Core Services.
    Smith, Benjamin
    Samuelsson, Patrick
    SMHI, Research Department, Climate research - Rossby Centre.
    Jansson, Christer
    Siltberg, Joe
    May, Wilhelm
    Vegetation-climate feedbacks modulate rainfall patterns in Africa under future climate change2016In: Earth System Dynamics, ISSN 2190-4979, E-ISSN 2190-4987, Vol. 7, no 3, p. 627-647Article in journal (Refereed)
  • 1683. WULFF, F
    et al.
    Rahm, Lars
    SMHI, Research Department, Oceanography.
    LONG-TERM, SEASONAL AND SPATIAL VARIATIONS OF NITROGEN, PHOSPHORUS AND SILICATE IN THE BALTIC - AN OVERVIEW1988In: Marine Environmental Research, ISSN 0141-1136, E-ISSN 1879-0291, Vol. 26, no 1, p. 19-37Article in journal (Refereed)
  • 1684. WULFF, F
    et al.
    STIGEBRANDT, A
    Rahm, Lars
    SMHI, Research Department, Oceanography.
    NUTRIENT DYNAMICS OF THE BALTIC SEA1990In: Ambio, ISSN 0044-7447, E-ISSN 1654-7209, Vol. 19, no 3, p. 126-133Article in journal (Refereed)
  • 1685.
    Wyser, Klaus
    et al.
    SMHI, Research Department, Climate research - Rossby Centre.
    Jones, Colin
    SMHI, Research Department, Climate research - Rossby Centre.
    Modeled and observed clouds during Surface Heat Budget of the Arctic Ocean (SHEBA)2005In: Journal of Geophysical Research - Atmospheres, ISSN 2169-897X, E-ISSN 2169-8996, Vol. 110, no D9, article id D09207Article in journal (Refereed)
    Abstract [en]

    [1] Observed monthly mean cloud cover from the SHEBA site is found to differ by a substantial amount during winter depending on cloud observing instrument. This makes it difficult for climate modelers to evaluate modeled clouds and improve parameterizations. Many instruments and human observers cannot properly detect the thinnest clouds and count them as clear sky instead, resulting in too low cloud cover. To study the impact from the difficulties in the detection of thin clouds, we compute cloud cover in our model with a filter that removes the thinnest clouds. Optical thickness is used as a proxy to identify thin clouds as we are mainly interested in the impact of clouds on radiation. With the results from a regional climate model simulation of the Arctic, we can reproduce the large variability in wintertime cloud cover between instruments when assuming different cloud detection thresholds. During winter a large fraction of all clouds are optically thin, which causes the large sensitivity to filtering by optical thickness. During summer, most clouds are far above the optical thickness threshold and filtering has no effect. A fair comparison between observed and modeled cloud cover should account for thin clouds that may be present in models but absent in the observational data set. Difficulties with the proper identification of clouds and clear sky also has an effect on cloud radiative forcing. The derived clear-sky longwave flux at the surface can vary by some W m(-2) depending on the lower limit for the optical thickness of clouds. This impacts on the "observed'' LW cloud radiative forcing and suggests great care is needed in using satellite-derived cloud radiative forcing for model development.

  • 1686.
    Wyser, Klaus
    et al.
    SMHI, Research Department, Climate research - Rossby Centre.
    Jones, Colin
    SMHI, Research Department, Climate research - Rossby Centre.
    Du, P.
    Girard, E.
    Willen, Ulrika
    SMHI, Research Department, Climate research - Rossby Centre.
    Cassano, J.
    Christensen, J. H.
    Curry, J. A.
    Dethloff, K.
    Haugen, J. -E
    Jacob, D.
    Koltzow, M.
    Laprise, R.
    Lynch, A.
    Pfeifer, S.
    Rinke, A.
    Serreze, M.
    Shaw, M. J.
    Tjernstrom, M.
    Zagar, M.
    An evaluation of Arctic cloud and radiation processes during the SHEBA year: simulation results from eight Arctic regional climate models2008In: Climate Dynamics, ISSN 0930-7575, E-ISSN 1432-0894, Vol. 30, no 2-3, p. 203-223Article in journal (Refereed)
    Abstract [en]

    Eight atmospheric regional climate models (RCMs) were run for the period September 1997 to October 1998 over the western Arctic Ocean. This period was coincident with the observational campaign of the Surface Heat Budget of the Arctic Ocean (SHEBA) project. The RCMs shared common domains, centred on the SHEBA observation camp, along with a common model horizontal resolution, but differed in their vertical structure and physical parameterizations. All RCMs used the same lateral and surface boundary conditions. Surface downwelling solar and terrestrial radiation, surface albedo, vertically integrated water vapour, liquid water path and cloud cover from each model are evaluated against the SHEBA observation data. Downwelling surface radiation, vertically integrated water vapour and liquid water path are reasonably well simulated at monthly and daily timescales in the model ensemble mean, but with considerable differences among individual models. Simulated surface albedos are relatively accurate in the winter season, but become increasingly inaccurate and variable in the melt season, thereby compromising the net surface radiation budget. Simulated cloud cover is more or less uncorrelated with observed values at the daily timescale. Even for monthly averages, many models do not reproduce the annual cycle correctly. The inter-model spread of simulated cloud-cover is very large, with no model appearing systematically superior. Analysis of the co-variability of terms controlling the surface radiation budget reveal some of the key processes requiring improved treatment in Arctic RCMs. Improvements in the parameterization of cloud amounts and surface albedo are most urgently needed to improve the overall performance of RCMs in the Arctic.

  • 1687.
    Wyser, Klaus
    et al.
    SMHI, Research Department, Climate research - Rossby Centre.
    Jones, Colin
    SMHI, Research Department, Climate research - Rossby Centre.
    Willén, Ulrika
    SMHI, Research Department, Climate research - Rossby Centre.
    Modelling clouds and radiation in the Arctic2005In: Extended abstracts of a WMO/WCRP-sponsored Regional-Scale Climate Modelling Workshop [Elektronisk resurs] : high-resolution climate modelling : assessment, added value and applications / [ed] Lars Bärring & René Laprise, Lund: Department of Physical Geography & Ecosystems Analysis, Lund University , 2005, p. 128-Conference paper (Other academic)
  • 1688.
    Wyser, Klaus
    et al.
    SMHI, Research Department, Climate research - Rossby Centre.
    Jones, Colin
    SMHI, Research Department, Climate research - Rossby Centre.
    Willén, Ulrika
    SMHI, Research Department, Climate research - Rossby Centre.
    Modelling clouds and radiation in the ARctic.2004In: 14th International conference on clouds and precipitation, 2004, p. 1442-1445Conference paper (Other academic)
  • 1689.
    Wyser, Klaus
    et al.
    SMHI, Research Department, Climate research - Rossby Centre.
    Rummukainen, Markku
    SMHI, Research Department, Climate research - Rossby Centre.
    Strandberg, Gustav
    SMHI, Research Department, Climate research - Rossby Centre.
    Nordic regionalisation of a greenhouse-gas stabilisation scenario2006Report (Other academic)
    Abstract [en]

    The impact of a CO2 stabilisation on the Swedish climate is investigated with the regional climate model RCA3 driven by boundary conditions obtained from a global coupled climate system model (CCSM3). The global model has been forced with observed greenhouse gas concentrations from pre-industrial conditions until today’s, and with an idealised further increase until the stabilisation level is reached. After stabilisation the model integration continues for another 150+ years in order to follow the delayed response of the climate system over a period of time.Results from the global and regional climate model are compared against observations and ECMWF reanalysis for 1961-1990. For this period, the global model is found to be too cold over Europe and with a zonal flow from the North Atlantic towards Europe that is too strong. The climate of the driving global model controls the climate of the regional model and the same deviations from one are thus inherited by the other. We therefore analyse the relative climate changes differences, or ratios, of climate variables between future's and today's climate.Compared to pre-industrial conditions, the global mean temperature changes by about 1.5oC as a result of the stabilisation at 450 ppmv equivalent CO2. Averaged over Europe, the temperature change is slightly larger, and it is even larger for Sweden and Northern Europe. Annual mean precipitation for Europe is unaffected, but Sweden receives more precipitation under higher CO2 levels. The inter-annual and decadal variability of annual mean temperature and precipitation does not change with any significant degree.The changes in temperature and precipitation are not evenly distributed with the season: the largest warming and increased precipitation in Northern Europe occurs during winter months while the summer climate remains more or less unchanged. The opposite is true for the Mediterranean region where the precipitation decreases mostly during summer. This also implies higher summer temperatures, but changes in winter are smaller. No substantial change in the wind climate over Europe is found.

  • 1690.
    Wåhlstrom, Irene
    et al.
    SMHI, Research Department, Oceanography.
    Meier, Markus
    SMHI, Research Department, Oceanography.
    A model sensitivity study for the sea-air exchange of methane in the Laptev Sea, Arctic Ocean2014In: Tellus. Series B, Chemical and physical meteorology, ISSN 0280-6509, E-ISSN 1600-0889, Vol. 66, article id 24174Article in journal (Refereed)
    Abstract [en]

    The ocean's sinks and sources determine the concentration of methane in the water column and by that regulating the emission of methane to the atmosphere. In this study, we investigate how sensitive the sea-air exchange of methane is to increasing/decreasing sinks and sources as well as changes of different drivers with a time-dependent biogeochemical budget model for one of the shallow shelf sea in the Siberian Arctic, the Laptev Sea. The applied changes are: increased air temperature, river discharge, wind, atmospheric methane, concentration of nutrients in the river runoff or flux of methane from the sediment. Furthermore, simulations are performed to examine how the large range in observations for methane concentration in the Lena River as well as the rate of oxidation affects the net sea-air exchange. In addition, a simulation with five of these changes applied together was carried out to simulate expected climate change at the end of this century. The result indicates that none of the simulations changed the seawater to becoming a net sink for atmospheric methane and all simulations except three increased the outgassing to the atmosphere. The three exceptions were: doubling the atmospheric methane, decreasing the rivers' concentration of methane and increasing the oxidation rate where the latter is one of the key mechanisms controlling emission of methane to the atmosphere.

  • 1691.
    Wåhlström, Irene
    et al.
    SMHI, Research Department, Oceanography.
    Dieterich, Christian
    SMHI, Research Department, Oceanography.
    Pemberton, Per
    SMHI, Research Department, Oceanography.
    Meier, Markus
    SMHI, Research Department, Oceanography.
    Impact of increasing inflow of warm Atlantic water on the sea-air exchange of carbon dioxide and methane in the Laptev Sea2016In: Journal of Geophysical Research - Biogeosciences, ISSN 2169-8953, E-ISSN 2169-8961, Vol. 121, no 7, p. 1867-1883Article in journal (Refereed)
  • 1692.
    Wåhlström, Irene
    et al.
    SMHI, Research Department, Oceanography.
    Eilola, Kari
    SMHI, Research Department, Oceanography.
    Edman, Moa
    SMHI, Research Department, Oceanography.
    Almroth-Rosell, Elin
    SMHI, Research Department, Oceanography.
    Evaluation of open sea boundary conditions for the coastal zone. A model study in the northern part of the Baltic Proper.2017Report (Other academic)
    Abstract [en]

    The environmental conditions in the coastal zone are strongly connected with the conditions in the open sea as the transports across the boundaries are extensive. Therefore, it is of critical importance that coastal zone models have lateral boundary forcing of high quality and required parameters with good coverage in space and time.

    The Swedish Coastal zone Model (SCM) is developed at SMHI to calculate water quality in the coastal zone. This model is currently forced by the outcome from a one-dimensional model, assimilated to observations along the coast. However, these observations are scarce both in space, time and do usually not include all required parameters. In addition, the variability closer to the coast may be underestimated by the open sea monitoring stations used for the data assimilation. These problems are partly overcome by utilize the one-dimensional model that resolves all the variables used in the SCM. However, the method is not applicable for examine either the past period or future scenario where the latter analyze how climate change might affect the coastal zone. In the present study, we therefore evaluate the possibility to use results from a three-dimensional coupled physical and biogeochemical model of the Baltic Sea as open sea boundary conditions for the coastal zone, primarily to investigate the two periods mentioned above.

    Seven sensitivity experiments have been carried out in a pilot area of the coastal zone, the northern part of the Baltic proper, including the Stockholm Archipelago. The sensitivity tests were performed in order to explore methods to extract the outcome from the three-dimensional model, RCO-SCOBI, and apply as lateral boundary forcing for the SCM. RCO-SCOBI is a model for the open Baltic Sea with high horizontal and vertical resolution of the required variables. The results from the different tests were examined and evaluated against observations in the coastal zone. This was executed for both the physical and the biogeochemical variables utilizing a statistical method.

    The results from this study concluded that the outcome from the RCO-SCOBI is applicable as forcing files for the SCM. The best results in the tests was obtained with a method extracting depth profiles for the required variables from the RCO-SCOBI at a position 10 nautical miles to the east and 10 nautical miles to the south in the Baltic proper or north in the Gulf of Bothnia outside each of the outer basins.

  • 1693. Xavier, Prince K.
    et al.
    Petch, Jon C.
    Klingaman, Nicholas P.
    Woolnough, Steve J.
    Jiang, Xianan
    Waliser, Duane E.
    Caian, Mihaela
    SMHI, Research Department, Climate research - Rossby Centre.
    Cole, Jason
    Hagos, Samson M.
    Hannay, Cecile
    Kim, Daehyun
    Miyakawa, Tomoki
    Pritchard, Michael S.
    Roehrig, Romain
    Shindo, Eiki
    Vitart, Frederic
    Wang, Hailan
    Vertical structure and physical processes of the Madden-Julian Oscillation: Biases and uncertainties at short range2015In: Journal of Geophysical Research - Atmospheres, ISSN 2169-897X, E-ISSN 2169-8996, Vol. 120, no 10, p. 4749-4763Article in journal (Refereed)
    Abstract [en]

    An analysis of diabatic heating and moistening processes from 12 to 36h lead time forecasts from 12 Global Circulation Models are presented as part of the Vertical structure and physical processes of the Madden-Julian Oscillation (MJO) project. A lead time of 12-36h is chosen to constrain the large-scale dynamics and thermodynamics to be close to observations while avoiding being too close to the initial spin-up of the models as they adjust to being driven from the Years of Tropical Convection (YOTC) analysis. A comparison of the vertical velocity and rainfall with the observations and YOTC analysis suggests that the phases of convection associated with the MJO are constrained in most models at this lead time although the rainfall in the suppressed phase is typically overestimated. Although the large-scale dynamics is reasonably constrained, moistening and heating profiles have large intermodel spread. In particular, there are large spreads in convective heating and moistening at midlevels during the transition to active convection. Radiative heating and cloud parameters have the largest relative spread across models at upper levels during the active phase. A detailed analysis of time step behavior shows that some models show strong intermittency in rainfall and differences in the precipitation and dynamics relationship between models. The wealth of model outputs archived during this project is a very valuable resource for model developers beyond the study of the MJO. In addition, the findings of this study can inform the design of process model experiments, and inform the priorities for field experiments and future observing systems.

  • 1694.
    Yang, Wei
    et al.
    SMHI, Research Department, Hydrology.
    Andreasson, Johan
    SMHI, Professional Services.
    Graham, Phil
    SMHI, Research Department, Climate research - Rossby Centre.
    Olsson, Jonas
    SMHI, Research Department, Hydrology.
    Rosberg, Jörgen
    SMHI, Research Department, Hydrology.
    Wetterhall, Fredrik
    SMHI, Research Department, Hydrology.
    Distribution-based scaling to improve usability of regional climate model projections for hydrological climate change impacts studies2010In: HYDROLOGY RESEARCH, ISSN 1998-9563, Vol. 41, no 3-4, p. 211-229Article in journal (Refereed)
    Abstract [en]

    As climate change could have considerable influence on hydrology and corresponding water management, appropriate climate change inputs should be used for assessing future impacts. Although the performance of regional climate models (RCMs) has improved over time, systematic model biases still constrain the direct use of RCM output for hydrological impact studies. To address this, a distribution-based scaling (DBS) approach was developed that adjusts precipitation and temperature from RCMs to better reflect observations. Statistical properties, such as daily mean, standard deviation, distribution and frequency of precipitation days, were much improved for control periods compared to direct RCM output. DBS-adjusted precipitation and temperature from two IPCC Special Report on Emissions Scenarios (SRESA1B) transient climate projections were used as inputs to the HBV hydrological model for several river basins in Sweden for the period 1961-2100. Hydrological results using DBS were compared to results with the widely-used delta change (DC) approach for impact studies. The general signal of a warmer and wetter climate was obtained using both approaches, but use of DBS identified differences between the two projections that were not seen with DC. The DBS approach is thought to better preserve the future variability produced by the RCM, improving usability for climate change impact studies.

  • 1695.
    Yang, Wei
    et al.
    SMHI, Research Department, Hydrology.
    Bardossy, Andras
    Caspary, Hans-Joachim
    Downscaling daily precipitation time series using a combined circulation- and regression-based approach2010In: Journal of Theoretical and Applied Climatology, ISSN 0177-798X, E-ISSN 1434-4483, Vol. 102, no 3-4, p. 439-454Article in journal (Refereed)
    Abstract [en]

    The aim of this paper is to introduce a new conditional statistical model for generating daily precipitation time series. The generated daily precipitation can thus be used for climate change impact studies, e.g., crop production, rainfall-runoff, and other water-related processes. It is a stochastic model that links local rainfall events to a continuous atmospheric predictor, moisture flux, in addition to classified atmospheric circulation patterns. The coupled moisture flux is proved to be capable of capturing continuous property of climate system and providing extra information to determine rainfall probability and rainfall amount. The application was made to simultaneously downscale daily precipitation at multiple sites within the Rhine River basin. The results show that the model can well reproduce statistical properties of daily precipitation time series. Especially for extreme rainfall events, the model is thought to better reflect rainfall variability compared to the pure CP-based downscaling approach.

  • 1696.
    Yang, Wei
    et al.
    SMHI, Research Department, Hydrology.
    Gardelin, Marie
    SMHI, Professional Services.
    Olsson, Jonas
    SMHI, Research Department, Hydrology.
    Bosshard, Thomas
    SMHI, Research Department, Hydrology.
    Multi-variable bias correction: application of forest fire risk in present and future climate in Sweden2015In: Natural hazards and earth system sciences, ISSN 1561-8633, E-ISSN 1684-9981, Vol. 15, no 9, p. 2037-2057Article in journal (Refereed)
    Abstract [en]

    As the risk of a forest fire is largely influenced by weather, evaluating its tendency under a changing climate becomes important for management and decision making. Currently, biases in climate models make it difficult to realistically estimate the future climate and consequent impact on fire risk. A distribution-based scaling (DBS) approach was developed as a post-processing tool that intends to correct systematic biases in climate modelling outputs. In this study, we used two projections, one driven by historical reanalysis (ERA40) and one from a global climate model (ECHAM5) for future projection, both having been dynamically down-scaled by a regional climate model (RCA3). The effects of the post-processing tool on relative humidity and wind speed were studied in addition to the primary variables precipitation and temperature. Finally, the Canadian Fire Weather Index system was used to evaluate the influence of changing meteorological conditions on the moisture content in fuel layers and the fire-spread risk. The forest fire risk results using DBS are proven to better reflect risk using observations than that using raw climate outputs. For future periods, southern Sweden is likely to have a higher fire risk than today, whereas northern Sweden will have a lower risk of forest fire.

  • 1697. Yin, Yunxing
    et al.
    Jiang, Sanyuan
    Pers, Charlotta
    SMHI, Research Department, Hydrology.
    Yang, Xiaoying
    Liu, Qun
    Yuan, Jin
    Yao, Mingxing
    He, Yi
    Luo, Xingzhang
    Zheng, Zheng
    Assessment of the Spatial and Temporal Variations of Water Quality for Agricultural Lands with Crop Rotation in China by Using a HYPE Model2016In: International Journal of Environmental Research and Public Health, ISSN 1661-7827, E-ISSN 1660-4601, Vol. 13, no 3Article in journal (Refereed)
    Abstract [en]

    Many water quality models have been successfully used worldwide to predict nutrient losses from anthropogenically impacted catchments, but hydrological and nutrient simulations with limited data are difficult considering the transfer of model parameters and complication of model calibration and validation. This study aims: (i) to assess the performance capabilities of a new and relatively more advantageous model, namely, Hydrological Predictions for the Environment (HYPE), that simulates stream flow and nutrient load in agricultural areas by using a multi-site and multi-objective parameter calibration method and (ii) to investigate the temporal and spatial variations of total nitrogen (TN) and total phosphorous (TP) concentrations and loads with crop rotation by using the model for the first time. A parameter estimation tool (PEST) was used to calibrate parameters. Results show that the parameters related to the effective soil porosity were highly sensitive to hydrological modeling. N balance was largely controlled by soil denitrification processes. P balance was influenced by the sedimentation rate and production/decay of P in rivers and lakes. The model reproduced the temporal and spatial variations of discharge and TN/TP relatively well in both calibration (2006-2008) and validation (2009-2010) periods. Among the obtained data, the lowest Nash-Suttclife efficiency of discharge, daily TN load, and daily TP load were 0.74, 0.51, and 0.54, respectively. The seasonal variations of daily TN concentrations in the entire simulation period were insufficient, indicated that crop rotation changed the timing and amount of N output. Monthly TN and TP simulation yields revealed that nutrient outputs were abundant in summer in terms of the corresponding discharge. The area-weighted TN and TP load annual yields in five years showed that nutrient loads were extremely high along Hong and Ru rivers, especially in agricultural lands.

  • 1698. Yom-Tov, Elad
    et al.
    Yom-Tov, Yoram
    Yom-Tov, Shlomith
    Andersen, Mogens
    Rosenfeld, Daniel
    Devasthale, Abhay
    SMHI, Research Department, Atmospheric remote sensing.
    Geffen, Eli
    The complex effects of geography, ambient temperature, and North Atlantic Oscillation on the body size of Arctic hares in Greenland2017In: Biological Journal of the Linnean Society, ISSN 0024-4066, E-ISSN 1095-8312, Vol. 120, no 4, p. 909-918Article in journal (Refereed)
  • 1699. Yttri, Karl Espen
    et al.
    Simpson, David
    Bergström, Robert
    SMHI, Research Department, Air quality.
    Kiss, Gyula
    Szidat, Sonke
    Ceburnis, Darius
    Eckhardt, Sabine
    Hueglin, Christoph
    Nojgaard, Jacob Kleno
    Perrino, Cinzia
    Pisso, Ignazio
    Prevot, Andre Stephan Henry
    Putaud, Jean-Philippe
    Spindler, Gerald
    Vana, Milan
    Zhang, Yan-Lin
    Aas, Wenche
    The EMEP Intensive Measurement Period campaign, 2008-2009: characterizing carbonaceous aerosol at nine rural sites in Europe2019In: Atmospheric Chemistry And Physics, ISSN 1680-7316, E-ISSN 1680-7324, Vol. 19, no 7, p. 4211-4233Article in journal (Refereed)
  • 1700. Yurkin, Maxim A.
    et al.
    Kahnert, Michael
    SMHI, Research Department, Air quality.
    Light scattering by a cube: Accuracy limits of the discrete dipole approximation and the T-matrix method2013In: Journal of Quantitative Spectroscopy and Radiative Transfer, ISSN 0022-4073, E-ISSN 1879-1352, Vol. 123, p. 176-183Article in journal (Refereed)
    Abstract [en]

    We simulated light-scattering by small and wavelength-sized cubes with three largely different values of the refractive index using the discrete dipole approximation (DDA) and the T-matrix method. Our main goal was to push the accuracy of both methods to the limit. For the DDA we used an earlier developed extrapolation technique based on simulation results for different levels of discretization. For the T-matrix method we developed a procedure to estimate a confidence range for the simulated value, using results for different values of the truncation index (number of multipoles). In most cases this confidence range was reliable, enclosing the corresponding DDA result. We present benchmark results by both methods, including estimated uncertainties, for selected integral and angle-resolved scattering quantities. Estimated relative uncertainties of the DDA result are unprecedentedly small (from 10(-7) to 10(-3)), while relative differences between the T-matrix and DDA results are larger (from 10(-4) to 0.2) in accordance with estimated T-matrix uncertainties. (C) 2012 Elsevier Ltd. All rights reserved.

3132333435 1651 - 1700 of 1714
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.9
|