Change search
Refine search result
567891011 141 - 160 of 374
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 141.
    Hordoir, Robinson
    et al.
    SMHI, Research Department, Oceanography.
    Dieterich, Christian
    SMHI, Research Department, Oceanography.
    Basu, Chandan
    Dietze, Heiner
    Meier, Markus
    SMHI, Research Department, Oceanography.
    Freshwater outflow of the Baltic Sea and transport in the Norwegian current: A statistical correlation analysis based on a numerical experiment2013In: Continental Shelf Research, ISSN 0278-4343, E-ISSN 1873-6955, Vol. 64, p. 1-9Article in journal (Refereed)
    Abstract [en]

    Based on the results of a numerical ocean model, we investigate statistical correlations between wind forcing, surface salinity and freshwater transport out of the Baltic Sea on one hand, and Norwegian coastal current freshwater transport on the other hand. These correlations can be explained in terms of physics and reveal how the two freshwater transports are linked with wind forcing, although this information proves to be non-sufficient when it comes to the dynamics of the Norwegian coastal current. Based on statistical correlations, the Baltic Sea freshwater transport signal is reconstructed and shows a good correlation but a poor variability when compared with the measured signal, at least when data filtered on a two-daily time scale is used. A better variability coherence is reached when data filtered on a weekly or monthly time scale is used. In the latest case, a high degree of precision is reached for the reconstructed signal. Using the same kind of methods for the case of the Norwegian coastal current, the negative peaks of the freshwater transport signal can be reconstructed based on wind data only, but the positive peaks are under-represented although some of them exist mostly because the meridional wind forcing along the Norwegian coast is taken into account. Adding Norwegian coastal salinity data helps improving the reconstruction of the positive peaks, but a major improvement is reached when adding non-linear terms in the statistical reconstruction. All coefficients used to re-construct both freshwater transport signals are provided for use in European Shelf or climate modeling configurations. (c) 2013 Elsevier Ltd. All rights reserved.

  • 142. Hakonen, Aron
    et al.
    Anderson, Leif G.
    Engelbrektsson, Johan
    Hulth, Stefan
    Karlson, Bengt
    SMHI, Research Department, Oceanography.
    A potential tool for high-resolution monitoring of ocean acidification2013In: Analytica Chimica Acta, ISSN 0003-2670, E-ISSN 1873-4324, Vol. 786, p. 1-7Article in journal (Refereed)
    Abstract [en]

    Current anthropogenic carbon dioxide emissions generate besides global warming unprecedented acidification rates of the oceans. Recent evidence indicates the possibility that ocean acidification and low oceanic pH may be a major reason for several mass extinctions in the past. However, a major bottleneck for research on ocean acidification is long-term monitoring and the collection of consistent high-resolution pH measurements. This study presents a low-power (<1 W) small sample volume (25 mu L) semiconductor based fluorescence method for real-time ship-board pH measurements at high temporal and spatial resolution (approximately 15 s and 100 m between samples). A 405 nm light emitting diode and the blue and green channels from a digital camera was used for swift detection of fluorescence from the pH sensitive dye 6,8-Dihydroxypyrene-1,3-disulfonic acid in real-time. Main principles were demonstrated by automated continuous measurements of pH in the surface water across the Baltic Sea and the Kattegat region with a large range in salinity (similar to 3-30) and temperature (similar to 0-25 degrees C). Ship-board precision of salinity and temperature adjusted pH measurements were estimated as low as 0.0001 pH units. (C) 2013 Elsevier B. V. All rights reserved.

  • 143. Hense, Inga
    et al.
    Meier, Markus
    SMHI, Research Department, Oceanography.
    Sonntag, Sebastian
    Projected climate change impact on Baltic Sea cyanobacteria Climate change impact on cyanobacteria2013In: Climatic Change, ISSN 0165-0009, E-ISSN 1573-1480, Vol. 119, no 2, p. 391-406Article in journal (Refereed)
    Abstract [en]

    Compared to other phytoplankton groups, nitrogen-fixing cyanobacteria generally prefer high water temperatures for growth and are therefore expected to benefit from global warming. We use a coupled biological-physical model with an advanced cyanobacteria life cycle model to compare the abundance of cyanobacteria in the Baltic Sea during two different time periods (1969-1998; 2069-2098). For the latter, we find prolonged growth and a more than twofold increase in the climatologically (30 years) averaged cyanobacteria biomass and nitrogen fixation. Additional sensitivity experiments indicate that the biological-physical feedback mechanism through light absorption becomes more important with global warming. In general, we find a nonlinear response of cyanobacteria to changes in the atmospheric forcing fields as a result of life-cycle related feedback mechanisms. Overall, the sensitivity of the cyanobacteria-driven system suggests that biological-physical and life-cycle related feedback mechanisms are important and must therefore be included in future projection studies.

  • 144. Dietze, H.
    et al.
    Löptien, Ulrike
    SMHI, Research Department, Oceanography.
    Revisiting "nutrient trapping" in global coupled biogeochemical ocean circulation models2013In: Global Biogeochemical Cycles, ISSN 0886-6236, E-ISSN 1944-9224, Vol. 27, no 2, p. 265-284Article in journal (Refereed)
    Abstract [en]

    We analyze an extensive set of global coupled biogeochemical ocean circulation models. The focus is on the equatorial Pacific. In all simulations, which are consistent with observed standing stocks of relevant biogeochemical species at the surface, we find spuriously enhanced (reduced) macronutrient (oxygen) concentrations in the deep eastern equatorial Pacific. This modeling problem, apparently endemic to global coupled biogeochemical ocean circulation models, was coined " nutrient trapping" by Najjar et al. (1992). In contrast to Aumont et al. (1999), we argue that " nutrient trapping" is still a persistent problem, even in eddy-permitting models and, further, that the scale of the problem retards model projections of nitrogen cycling. In line with previous work, our results indicate that a deficient circulation is at the core of the problem rather than an admittedly poor quantitative understanding of biogeochemical cycles. More specifically, we present indications that " nutrient trapping" in models is a result of a spuriously damped Equatorial Intermediate (zonal) Current System and Equatorial Deep Jets-phenomenon which await a comprehensive understanding and have, to date, not been successfully simulated.

  • 145.
    Eilola, Kari
    et al.
    SMHI, Research Department, Oceanography.
    Martensson, S.
    Meier, Markus
    SMHI, Research Department, Oceanography.
    Modeling the impact of reduced sea ice cover in future climate on the Baltic Sea biogeochemistry2013In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 40, no 1, p. 149-154Article in journal (Refereed)
    Abstract [en]

    In a warming future climate, the sea ice cover is expected to decrease, with very likely large consequences for the marine ecosystem. We investigated the impact of future sea ice retreat on the Baltic Sea biogeochemistry at the end of the century, using an ensemble of regionalized global climate simulations. We found that the spring bloom will start by up to one month earlier and winds and wave-induced resuspension will increase, causing an increased transport of nutrients from the productive coastal zone into the deeper areas. The internal nutrient fluxes do not necessarily increase because they also depend on oxygen and temperature conditions of the bottom water. Winter mixing increases in areas having reduced ice cover and in areas having reduced stratification due to increased freshwater supply. The reduced sea ice cover therefore partly counteracts eutrophication because increased vertical mixing improves oxygen conditions in lower layers. Citation: Eilola, K., S. Martensson, and H. E. M. Meier (2013), Modeling the impact of reduced sea ice cover in future climate on the Baltic Sea biogeochemistry, Geophys. Res. Lett., 40, 149-154, doi:10.1029/2012GL054375.

  • 146.
    Kuznetsov, Ivan
    et al.
    SMHI, Research Department, Oceanography.
    Neumann, Thomas
    Simulation of carbon dynamics in the Baltic Sea with a 3D model2013In: Journal of Marine Systems, ISSN 0924-7963, E-ISSN 1879-1573, Vol. 111, p. 167-174Article in journal (Refereed)
    Abstract [en]

    A full resolved three-dimensional physical-biogeochemical model ERGOM (Ecological ReGional Ocean model) was used to simulate the carbon dynamics in the Baltic Sea. Here, a simple carbon cycle has been included in the model. This was accomplished by the addition of dissolved inorganic carbon and total alkalinity to the model. Model results of the hindcast simulation (1961-2007) are in a good agreement with observations. Lateral gradients of the alkalinity are well reproduced by the model. A net inorganic carbon transport from the Baltic Sea to the Kattegat is in the range of the results of previous studies. Further, two climate projections with different nutrient load scenarios reflecting the possible development of the carbon system dynamics in the Baltic Sea were conducted. Climate scenario simulations (1961-2100) showed a continuous "acidification effect" of the Baltic Sea that mainly is controlled by changing of the atmospheric pCO(2). However, changes in pH due to other factors (such as changing temperature, primary production) are different for different regions of the sea. Simulated mean total alkalinity and dissolved inorganic carbon decrease in scenarios of climate change despite the increase of total alkalinity and dissolved inorganic carbon loads. The performed climate simulations show that mean total alkalinity decreases by about 150 mmol m(-3) and dissolved inorganic carbon by about 80-120 mmol m(-3). At the same time total alkalinity to salinity relations change in future climate due to that salinity decreases "faster" than alkalinity. Simultaneously, export of the total alkalinity and the dissolved inorganic carbon from the Baltic Sea to the North Sea has the trend to increase from 11% to 18% depending on the climate scenario. C) 2012 Elsevier B.V. All rights reserved.

  • 147.
    Löptien, Ulrike
    et al.
    SMHI, Research Department, Oceanography.
    Martensson, S.
    Meier, Markus
    SMHI, Research Department, Oceanography.
    Höglund, Anders
    SMHI, Research Department, Oceanography.
    Long-term characteristics of simulated ice deformation in the Baltic Sea (1962-2007)2013In: JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, ISSN 2169-9275, Vol. 118, no 2, p. 801-815Article in journal (Refereed)
    Abstract [en]

    The North Atlantic Oscillation (NAO) index is a frequently used measure for the mean winter conditions in Northern Europe. A positive, high index is associated with strong westerlies and anomalous warm temperatures. The effects on sea ice conditions in the Baltic Sea are twofold. Warm temperatures prevent sea ice formation. If ice is present nevertheless, the strong winds can promote the formation of ice ridges which hinders ship traffic. We use an ocean-sea ice model to investigate the NAO impact on the ridged ice area fraction in the Baltic during 1962-2007. Our simulations indicate that in the northern Bothnian Bay, a high NAO index is related to an anomalous accumulation of ridges, while in the rest of the Baltic Sea, the relationship is contrary. The NAO explains locally at most only 20-25% of the ridged ice fraction interannual variability which indicates the systems complexity. However, we find high skill with local correlations around 0.8 for annually averaged ridged ice fraction reconstructed from multilinear regression using winter averaged wind extremes, surface air temperature, and sea surface temperature (SST). This suggests that the amount of ridged ice in late winter can be derived from these routinely measured quantities. In large parts of the basin, it is sufficient to use the atmospheric parameters as a predictor, while in the eastern Bothnian Bay and southern Gulf of Finland, the SST is required to reconstruct the bulk of the ridged ice fraction. Citation: Loptien, U., S. Martensson, H. E. M. Meier, and A. Hoglund (2013), Long-term characteristics of simulated ice deformation in the Baltic Sea (1962-2007), J. Geophys. Res. Oceans, 118, 801-815, doi:10.1002/jgrc.20089.

  • 148.
    Schimanke, Semjon
    et al.
    SMHI, Research Department, Oceanography.
    Spangehl, T.
    Huebener, H.
    Cubasch, U.
    Variability and trends of major stratospheric warmings in simulations under constant and increasing GHG concentrations2013In: Climate Dynamics, ISSN 0930-7575, E-ISSN 1432-0894, Vol. 40, no 7-8, p. 1733-1747Article in journal (Refereed)
    Abstract [en]

    Ensemble simulations with a coupled ocean-troposphere-stratosphere model for the pre-industrial era (1860 AD), late twentieth century (1990 AD) greenhouse gas (GHG) concentrations, the SRES scenarios B1, A1B, A2, as well as stabilization experiments up to the Twenty-third century with B1 and A1B scenario GHG concentrations at their values at 2100, have been analyzed with regard to the occurrence of major sudden stratospheric warmings (SSWs). An automated algorithm using 60A degrees N and 10 hPa zonal wind and the temperature gradient between 60A degrees N and the North Pole is used to identify this phenomenon in the large data set. With 1990 CO2 concentrations (352 ppmv), the frequency of simulated SSWs in February and March is comparable to observation, but they are underestimated during November to January. All simulations show an increase in the number of SSWs from the pre-industrial period to the end of the twenty-first century, indicating that the increase of GHG is also reflected in the number of sudden warmings. However, a high variability partially masks the underlying trend. Multi-century averages during the stabilization periods indicate that the increase of SSWs is linear to the applied radiative forcing. A doubling of SSWs occurs when the GHG concentration reaches the level of the A2 scenario at the end of the twenty-first century (836 ppmv). The increase in SSWs in the projections is caused by a combination of increased wave flux from the troposphere and weaker middle atmospheric zonal winds.

  • 149.
    Meier, Markus
    et al.
    SMHI, Research Department, Oceanography.
    Eilola, Kari
    SMHI, Research Department, Oceanography.
    Gustavsson, B.G.
    Stockholm Resilience Centre/Baltic Nest Institute, Stockholm University, Stockholm, Sweden.
    Kuznetsov, I.
    Baltic Sea Research Institute Warnemünde, Germany.
    Neumann, T.
    Leibniz-Institute for Baltic Sea Research Warnemünde, Rostock, Germany.
    Savchuk, O.P.
    Stockholm Resilience Centre/Baltic Nest Institute, Stockholm University,Stockholm, Sweden.
    Uncertainty assessment of projected ecological quality indicators in future climate2012Report (Other academic)
    Abstract [en]

    Uncertainties of projected physical key parameters and ecological quality indicators of the Baltic Sea environment, like water temperature, salinity, oxygen, nutrients and water transparency in future climate are assessed. We analyzed an ensemble of 38 scenario simulations for 1961-2099. Three state-of-the-art coupled physicalbiogeochemical models are forced with four regionalized climate projections assuming either the A1B or A2 greenhouse gas emission scenario and with four nutrient load scenarios covering the entire range from a pessimistic to a optimistic assumption of the future socioeconomic development in the Baltic Sea region. We found considerable discrepancies of projected ecological quality indicators because the sensitivities of the ecosystem response to nutrient load and temperature changes differ among the models. However, despite these uncertainties all three models agree qualitatively well in their overall response. In particular, the impact of warmer water counteracts in all models the impact of nutrient load reductions.

  • 150.
    Väli, Germo
    et al.
    SMHI, Research Department, Oceanography.
    Meier, Markus
    SMHI, Research Department, Oceanography.
    Elken, Jüri
    Marine Systems Institute at Tallinn University of Technology, Tallinn, Estonia.
    Simulated variations of the Baltic Sea halocline during 1961-20072012Report (Other academic)
    Abstract [en]

    The variations in the Baltic Sea salinity and the mean halocline depth during 1961-2007 are studied using Rossby Centre Ocean model. The largest trend in the monthly mean salinity averaged over the top 15 m was found in the Gulf of Riga and Baltic proper, while the trend in the northernmost part was non-existant. A period with shallow halocline in the Baltic Sea during 1970-1975 was identified and a period with deep halocline during 1990-1995 with the difference exceeding morethan 15 m in the Baltic proper between the two time-periods. Model simulation indicated that the mean surface salinity in the Baltic Sea is spatially controlled by the accumulated river runoff, while the mean salinity below the halocline in the Baltic proper by the mean zonal and absolute wind speed. The halocline depth in the Baltic Sea is affected significantly by the freshwater content and absolute wind speed. The impact of the mean zonal wind speed to the mean halocline depth in the Baltic proper is moderate, while the impact of runoff is low.

  • 151.
    Axe, Philip
    et al.
    SMHI, Research Department, Oceanography.
    Wesslander, Karin
    SMHI, Core Services.
    Kronsell, Johan
    SMHI, Core Services.
    Confidence rating for OSPAR COMP2012Report (Other academic)
    Abstract [en]

    With the adoption of the Marine Strategy Framework Directive and the Water Framework Directive, EU Member States are obliged to achieve “Good” or “Good Environmental” Status within a certain time frame, or be obliged to take remedial action. There is therefore a need to quantify the quality of the monitoring programmes on which such status assessments are based, as a part of assessing the confidence in the status assessment. Within the framework of the OSPAR Convention on the Protection of the North East Atlantic, Germany and the Netherlands presented a suggestion for how such an assessment could be made. This report documents the application of this methodology to stations in the Swedish National Monitoring Programme within the OSPAR area, and also within the Sound, which may in future be included in the Greater North Sea region under the Marine Strategy Directive. The variability of eutrophication parameters with salinity was examined. In the Kattegat, inorganic nutrient variability was least at the highest salinities, suggesting that a reliable status assessment could be made more easily with data from this region, for example, rather than in the dynamic near coast region. Assessing the coverage of the existing monitoring programme, it was found that horizontal gradients in assessment parameters (generally seasonal averages) varied by less than about 30% between stations, which suggests that the programme has reasonable spatial coverage, though additional stations would improve matters. Looking at each station individually, the current vertical sampling resolution appears adequate for most parameters, apart from chlorophyll a and inorganic nutrients during the growing season. Temporal coverage is adequate for the total nutrient concentrations, but is insufficient for the inorganic nutrients and chlorophyll a, as well as for the deep water oxygen concentration in the Sound. The poor temporal coverage of chlorophyll a and inorganic nutrients could be relatively easily improved by the addition of a two channel (nitrate + nitrite, and orthophosphate) autoanalyser onto the existing ferrybox platforms in use in these waters. Addressing these problems using traditional measuring platforms and buoys would be more costly. The poor temporal coverage of chlorophyll a and inorganic nutrients could be relatively easily improved by the addition of a two channel (nitrate + nitrite, and orthophosphate) autoanalyser onto the existing ferrybox platforms in use in these waters. Addressing these problems using traditional measuring platforms and buoys would be more costly.

  • 152.
    Schimanke, Semjon
    et al.
    SMHI, Research Department, Oceanography.
    Meier, Markus
    SMHI, Research Department, Oceanography.
    Kjellström, Erik
    SMHI, Research Department, Climate research - Rossby Centre.
    Strandberg, Gustav
    SMHI, Research Department, Climate research - Rossby Centre.
    Hordoir, Robinson
    SMHI, Research Department, Oceanography.
    The climate in the Baltic Sea region during the last millennium simulated with a regional climate model2012In: Climate of the Past, ISSN 1814-9324, E-ISSN 1814-9332, Vol. 8, no 5, p. 1419-1433Article in journal (Refereed)
    Abstract [en]

    Variability and long-term climate change in the Baltic Sea region is investigated for the pre-industrial period of the last millennium. For the first time dynamical down-scaling covering the complete millennium is conducted with a regional climate model in this area. As a result of changing external forcing conditions, the model simulation shows warm conditions in the first centuries followed by a gradual cooling until ca. 1700 before temperature increases in the last centuries. This long-term evolution, with a Medieval Climate Anomaly (MCA) and a Little Ice Age (LIA), is in broad agreement with proxy-based reconstructions. However, the timing of warm and cold events is not captured at all times. We show that the regional response to the global climate anomalies is to a strong degree modified by the large-scale circulation in the model. In particular, we find that a positive phase of the North Atlantic Oscillation (NAO) simulated during MCA contributes to enhancing winter temperatures and precipitation in the region while a negative NAO index in the LIA reduces them. In a second step, the regional ocean model (RCO-SCOBI) is used to investigate the impact of atmospheric changes onto the Baltic Sea for two 100 yr time slices representing the MCA and the LIA. Besides the warming of the Baltic Sea, the water becomes fresher at all levels during the MCA. This is induced by increased runoff and stronger westerly winds. Moreover, the oxygen concentrations in the deep layers are slightly reduced during the MCA. Additional sensitivity studies are conducted to investigate the impact of even higher temperatures and increased nutrient loads. The presented experiments suggest that changing nutrient loads may be more important determining oxygen depletion than changes in temperature or dynamic feedbacks.

  • 153. Toledano, C.
    et al.
    Cachorro, V. E.
    Gausa, M.
    Stebel, K.
    Aaltonen, V.
    Berjon, A.
    Ortiz de Galisteo, J. P.
    de Frutos, A. M.
    Bennouna, Y.
    Blindheim, S.
    Myhre, C. L.
    Zibordi, G.
    Wehrli, C.
    Kratzer, S.
    Håkansson, Bertil
    SMHI, Research Department, Oceanography.
    Carlund, Thomas
    SMHI, Core Services.
    de Leeuw, G.
    Herber, A.
    Torres, B.
    Overview of sun photometer measurements of aerosol properties in Scandinavia and Svalbard2012In: Atmospheric Environment, ISSN 1352-2310, E-ISSN 1873-2844, Vol. 52, p. 18-28Article in journal (Refereed)
    Abstract [en]

    An overview on the data of columnar aerosol properties measured in Northern Europe is provided. Apart from the necessary data gathered in the Arctic, the knowledge of the aerosol loading in nearby areas (e.g. sub-Arctic) is of maximum interest to achieve a correct analysis of the Arctic aerosols and transport patterns. This work evaluates data from operational sites with sun photometer measurements belonging either to national or international networks (AERONET, GAW-PFR) and programs conducted in Scandinavia and Svalbard. We enumerate a list of sites, measurement type and periods together with observed aerosol properties. An evaluation and analysis of aerosol data was carried out with a review of previous results as well. Aerosol optical depth (AOD) and Angstrom exponent (AE) are the current parameters with sufficient long-term records for a first evaluation of aerosol properties. AOD (500 nm) ranges from 0.08 to 0.10 in Arctic and sub-Arctic sites (Ny-Alesund: 0.09; Andenes: 0.10; Sodankyla: 0.08), and it is somewhat higher in more populated areas in Southern Scandinavia (AOD about 0.10-0.12 at 500 nm). On the Norwegian coast, aerosols show larger mean size (AE = 1.2 at Andenes) than in Finland, with continental climate (AE = 1.5 at Sodankyla). Columnar particle size distributions and related parameters derived from inversion of sun/sky radiances were also investigated. This work makes special emphasis in the joint and collaborative effort of the various groups from different countries involved in this study. Part of the measurements presented here were involved in the IPY projects Polar-AOD and POLARCAT. (C) 2011 Elsevier Ltd. All rights reserved.

  • 154.
    Meier, Markus
    et al.
    SMHI, Research Department, Oceanography.
    Andersson, Helén
    SMHI, Research Department, Oceanography.
    Arheimer, Berit
    SMHI, Research Department, Hydrology.
    Blenckner, Thorsten
    Chubarenko, Boris
    Donnelly, Chantal
    SMHI, Research Department, Hydrology.
    Eilola, Kari
    SMHI, Research Department, Oceanography.
    Gustafsson, Bo G.
    Hansson, Anders
    Havenhand, Jonathan
    Höglund, Anders
    SMHI, Research Department, Oceanography.
    Kuznetsov, Ivan
    MacKenzie, Brian R.
    Muller-Karulis, Barbel
    Neumann, Thomas
    Niiranen, Susa
    Piwowarczyk, Joanna
    Raudsepp, Urmas
    Reckermann, Marcus
    Ruoho-Airola, Tuija
    Savchuk, Oleg P.
    Schenk, Frederik
    Schimanke, Semjon
    SMHI, Research Department, Oceanography.
    Vali, Germo
    Weslawski, Jan-Marcin
    Zorita, Eduardo
    Comparing reconstructed past variations and future projections of the Baltic Sea ecosystem-first results from multi-model ensemble simulations2012In: Environmental Research Letters, ISSN 1748-9326, E-ISSN 1748-9326, Vol. 7, no 3, article id 034005Article in journal (Refereed)
    Abstract [en]

    Multi-model ensemble simulations for the marine biogeochemistry and food web of the Baltic Sea were performed for the period 1850-2098, and projected changes in the future climate were compared with the past climate environment. For the past period 1850-2006, atmospheric, hydrological and nutrient forcings were reconstructed, based on historical measurements. For the future period 1961-2098, scenario simulations were driven by regionalized global general circulation model (GCM) data and forced by various future greenhouse gas emission and air-and riverborne nutrient load scenarios (ranging from a pessimistic 'business-as-usual' to the most optimistic case). To estimate uncertainties, different models for the various parts of the Earth system were applied. Assuming the IPCC greenhouse gas emission scenarios A1B or A2, we found that water temperatures at the end of this century may be higher and salinities and oxygen concentrations may be lower than ever measured since 1850. There is also a tendency of increased eutrophication in the future, depending on the nutrient load scenario. Although cod biomass is mainly controlled by fishing mortality, climate change together with eutrophication may result in a biomass decline during the latter part of this century, even when combined with lower fishing pressure. Despite considerable shortcomings of state-of-the-art models, this study suggests that the future Baltic Sea ecosystem may unprecedentedly change compared to the past 150 yr. As stakeholders today pay only little attention to adaptation and mitigation strategies, more information is needed to raise public awareness of the possible impacts of climate change on marine ecosystems.

  • 155.
    Höglund, Anders
    et al.
    SMHI, Research Department, Oceanography.
    Meier, Markus
    SMHI, Research Department, Oceanography.
    Environmentally safe areas and routes in the Baltic proper using Eulerian tracers2012In: Marine Pollution Bulletin, ISSN 0025-326X, E-ISSN 1879-3363, Vol. 64, no 7, p. 1375-1385Article in journal (Refereed)
    Abstract [en]

    In recent years, the shipping of environmentally hazardous cargo has increased considerably in the Baltic proper. In this study, a large number of hypothetical oil spills with an idealized, passive tracer are simulated. From the tracer distributions, statistical measures are calculated to optimize the quantity of tracer from a spill that would stay at sea as long as possible. Increased time may permit action to be taken against the spill before the oil reaches environmentally vulnerable coastal zones. The statistical measures are used to calculate maritime routes with maximum probability that an oil spill will stay at sea as long as possible. Under these assumptions, ships should follow routes that are located south of Bornholm instead of the northern routes in use currently. Our results suggest that the location of the optimal maritime routes depends on the season, although interannual variability is too large to identify statistically significant changes. (c) 2012 Elsevier Ltd. All rights reserved.

  • 156. Jahn, A.
    et al.
    Aksenov, Y.
    de Cuevas, B. A.
    de Steur, L.
    Hakkinen, S.
    Hansen, E.
    Herbaut, C.
    Houssais, M. -N
    Karcher, M.
    Kauker, F.
    Lique, C.
    Nguyen, A.
    Pemberton, Per
    SMHI, Research Department, Oceanography.
    Worthen, D.
    Zhang, J.
    Arctic Ocean freshwater: How robust are model simulations?2012In: JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, ISSN 2169-9275, Vol. 117, article id C00D16Article in journal (Refereed)
    Abstract [en]

    The Arctic freshwater (FW) has been the focus of many modeling studies, due to the potential impact of Arctic FW on the deep water formation in the North Atlantic. A comparison of the hindcasts from ten ocean-sea ice models shows that the simulation of the Arctic FW budget is quite different in the investigated models. While they agree on the general sink and source terms of the Arctic FW budget, the long-term means as well as the variability of the FW export vary among models. The best model-to-model agreement is found for the interannual and seasonal variability of the solid FW export and the solid FW storage, which also agree well with observations. For the interannual and seasonal variability of the liquid FW export, the agreement among models is better for the Canadian Arctic Archipelago (CAA) than for Fram Strait. The reason for this is that models are more consistent in simulating volume flux anomalies than salinity anomalies and volume-flux anomalies dominate the liquid FW export variability in the CAA but not in Fram Strait. The seasonal cycle of the liquid FW export generally shows a better agreement among models than the interannual variability, and compared to observations the models capture the seasonality of the liquid FW export rather well. In order to improve future simulations of the Arctic FW budget, the simulation of the salinity field needs to be improved, so that model results on the variability of the liquid FW export and storage become more robust. Citation: Jahn, A., et al. (2012), Arctic Ocean freshwater: How robust are model simulations?, J. Geophys. Res., 117, C00D16, doi: 10.1029/2012JC007907.

  • 157.
    Meier, Markus
    et al.
    SMHI, Research Department, Oceanography.
    Muller-Karulis, Barbel
    Andersson, Helén
    SMHI, Research Department, Oceanography.
    Dieterich, Christian
    SMHI, Research Department, Oceanography.
    Eilola, Kari
    SMHI, Research Department, Oceanography.
    Gustafsson, Bo G.
    Höglund, Anders
    SMHI, Research Department, Oceanography.
    Hordoir, Robinson
    SMHI, Research Department, Oceanography.
    Kuznetsov, Ivan
    SMHI, Research Department, Oceanography.
    Neumann, Thomas
    Ranjbar, Zohreh
    Savchuk, Oleg P.
    Schimanke, Semjon
    SMHI, Research Department, Oceanography.
    Impact of Climate Change on Ecological Quality Indicators and Biogeochemical Fluxes in the Baltic Sea: A Multi-Model Ensemble Study2012In: Ambio, ISSN 0044-7447, E-ISSN 1654-7209, Vol. 41, no 6, p. 558-573Article in journal (Refereed)
    Abstract [en]

    Multi-model ensemble simulations using three coupled physical-biogeochemical models were performed to calculate the combined impact of projected future climate change and plausible nutrient load changes on biogeochemical cycles in the Baltic Sea. Climate projections for 1961-2099 were combined with four nutrient load scenarios ranging from a pessimistic business-as-usual to a more optimistic case following the Helsinki Commission's (HELCOM) Baltic Sea Action Plan (BSAP). The model results suggest that in a future climate, water quality, characterized by ecological quality indicators like winter nutrient, summer bottom oxygen, and annual mean phytoplankton concentrations as well as annual mean Secchi depth (water transparency), will be deteriorated compared to present conditions. In case of nutrient load reductions required by the BSAP, water quality is only slightly improved. Based on the analysis of biogeochemical fluxes, we find that in warmer and more anoxic waters, internal feedbacks could be reinforced. Increased phosphorus fluxes out of the sediments, reduced denitrification efficiency and increased nitrogen fixation may partly counteract nutrient load abatement strategies.

  • 158.
    Eilola, Kari
    et al.
    SMHI, Research Department, Oceanography.
    Almroth-Rosell, Elin
    SMHI, Research Department, Oceanography.
    Dieterich, Christian
    SMHI, Research Department, Oceanography.
    Fransner, Filippa
    Höglund, Anders
    SMHI, Research Department, Oceanography.
    Meier, Markus
    SMHI, Research Department, Oceanography.
    Modeling Nutrient Transports and Exchanges of Nutrients Between Shallow Regions and the Open Baltic Sea in Present and Future Climate2012In: Ambio, ISSN 0044-7447, E-ISSN 1654-7209, Vol. 41, no 6, p. 586-599Article in journal (Refereed)
    Abstract [en]

    We quantified horizontal transport patterns and the net exchange of nutrients between shallow regions and the open sea in the Baltic proper. A coupled biogeochemical-physical circulation model was used for transient simulations 1961-2100. The model was driven by regional downscaling of the IPCC climate change scenario A1B from two global General Circulation Models in combination with two nutrient load scenarios. Modeled nutrient transports followed mainly the large-scale internal water circulation and showed only small circulation changes in the future projections. The internal nutrient cycling and exchanges between shallow and deeper waters became intensified, and the internal removal of phosphorus became weaker in the warmer future climate. These effects counteracted the impact from nutrient load reductions according to the Baltic Sea Action Plan. The net effect of climate change and nutrient reductions was an increased net import of dissolved inorganic phosphorus to shallow areas in the Baltic proper.

  • 159. Neumann, Thomas
    et al.
    Eilola, Kari
    SMHI, Research Department, Oceanography.
    Gustafsson, Bo
    Muller-Karulis, Barbel
    Kuznetsov, Ivan
    SMHI, Research Department, Oceanography.
    Meier, Markus
    SMHI, Research Department, Oceanography.
    Savchuk, Oleg P.
    Extremes of Temperature, Oxygen and Blooms in the Baltic Sea in a Changing Climate2012In: Ambio, ISSN 0044-7447, E-ISSN 1654-7209, Vol. 41, no 6, p. 574-585Article in journal (Refereed)
    Abstract [en]

    In the future, the Baltic Sea ecosystem will be impacted both by climate change and by riverine and atmospheric nutrient inputs. Multi-model ensemble simulations comprising one IPCC scenario (A1B), two global climate models, two regional climate models, and three Baltic Sea ecosystem models were performed to elucidate the combined effect of climate change and changes in nutrient inputs. This study focuses on the occurrence of extreme events in the projected future climate. Results suggest that the number of days favoring cyanobacteria blooms could increase, anoxic events may become more frequent and last longer, and salinity may tend to decrease. Nutrient load reductions following the Baltic Sea Action Plan can reduce the deterioration of oxygen conditions.

  • 160. Gustafsson, Bo G.
    et al.
    Schenk, Frederik
    Blenckner, Thorsten
    Eilola, Kari
    SMHI, Research Department, Oceanography.
    Meier, Markus
    SMHI, Research Department, Oceanography.
    Muller-Karulis, Barbel
    Neumann, Thomas
    Ruoho-Airola, Tuija
    Savchuk, Oleg P.
    Zorita, Eduardo
    Reconstructing the Development of Baltic Sea Eutrophication 1850-20062012In: Ambio, ISSN 0044-7447, E-ISSN 1654-7209, Vol. 41, no 6, p. 534-548Article in journal (Refereed)
    Abstract [en]

    A comprehensive reconstruction of the Baltic Sea state from 1850 to 2006 is presented: driving forces are reconstructed and the evolution of the hydrography and biogeochemical cycles is simulated using the model BALTSEM. Driven by high resolution atmospheric forcing fields (HiResAFF), BALTSEM reproduces dynamics of salinity, temperature, and maximum ice extent. Nutrient loads have been increasing with a noteworthy acceleration from the 1950s until peak values around 1980 followed by a decrease continuing up to present. BALTSEM shows a delayed response to the massive load increase with most eutrophic conditions occurring only at the end of the simulation. This is accompanied by an intensification of the pelagic cycling driven by a shift from spring to summer primary production. The simulation indicates that no improvement in water quality of the Baltic Sea compared to its present state can be expected from the decrease in nutrient loads in recent decades.

567891011 141 - 160 of 374
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.7
|