Endre søk
Begrens søket
45678910 121 - 140 of 341
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 121. Jonsson, Oskar
    et al.
    Andersson, Camilla
    SMHI, Forskningsavdelningen, Luftmiljö.
    Forsberg, Bertil
    Johansson, Christer
    Air pollution episodes in Stockholm regional background air due to sources in Europe and their effects on human population2013Inngår i: Boreal environment research, ISSN 1239-6095, E-ISSN 1797-2469, Vol. 18, nr 3-4, s. 280-302Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Using air quality measurements, we categorized air pollution according to source sectors in a rural background environment in southern Sweden based on hourly air-mass backward trajectories during 1997-2010. Concentrations of fine (PM2.5) and sum of fine and coarse particulate matter (PM10), accumulation mode particle number, black carbon and surface ozone were 4.0, 3.9, 4.5, 6.8 and 1.3 times higher, respectively, in air masses from the southeast as compared with those in air masses from the cleanest sector in the northwest, consistent with air-mass transport over areas with relatively high emissions of primary particulate matter (PM) and secondary PM precursors. The highest ultrafine particle numbers were associated with clean air from the northwest. We estimate that almost 7.8% and 0.6% higher premature human mortality is caused by PM2.5 and ozone exposure, respectively, when air originates from the southeast as compared with that when air originates from the northwest. Reductions of emissions in eastern Europe would reduce the highest air pollution concentrations and associated health risks. However, since air masses from the southwest are more frequent, emissions in the western part of Europe are more important for annual mean premature mortality.

  • 122. Denby, B. R.
    et al.
    Sundvor, I.
    Johansson, C.
    Pirjola, L.
    Ketzel, M.
    Norman, M.
    Kupiainen, K.
    Gustafsson, M.
    Blomqvist, G.
    Omstedt, Gunnar
    SMHI, Forskningsavdelningen, Luftmiljö.
    A coupled road dust and surface moisture model to predict non-exhaust road traffic induced particle emissions (NORTRIP). Part 1: Road dust loading and suspension modelling2013Inngår i: Atmospheric Environment, ISSN 1352-2310, E-ISSN 1873-2844, Vol. 77, s. 283-300Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Non-exhaust traffic induced emissions are a major source of particle mass in most European countries. This is particularly important in Nordic and Alpine countries where winter time road traction maintenance occurs, e.g. salting and sanding, and where studded tyres are used. In this paper, Part 1, the road dust sub-model of a coupled road dust and surface moisture model (NORTRIP) is described. The model provides a generalised process based formulation of the non-exhaust emissions, with emphasis on the contribution of road wear, suspension, surface dust loading and the effect of road surface moisture (retention of wear particles and suspended emissions). The model is intended for use as a tool for air quality managers to help study the impact of mitigation measures and policies. We present a description of the road dust sub-model and apply the model to two sites in Stockholm and Copenhagen where seven years of data with surface moisture measurements are available. For the site in Stockholm, where studded tyres are in use, the model predicts the PM10 concentrations very well with correlations (R-2) in the range of R-2 = 0.76-0.91 for daily mean PM10. The model also reproduces well the impact of a reduction in studded tyres at this site. For the site in Copenhagen the correlation is lower, in the range 0.44-0.51. The addition of salt is described in the model and at both sites this leads to improved correlations due to additional salt emissions. For future use of the model a number of model parameters, e.g. wear factors and suspension rates, still need to be refined. The effect of sanding on PM10 emissions is also presented but more information will be required before this can be confidently applied for management applications. (C) 2013 Elsevier Ltd. All rights reserved.

  • 123.
    Omstedt, Gunnar
    et al.
    SMHI, Forskningsavdelningen, Luftmiljö.
    Andersson, Stefan
    SMHI, Forskningsavdelningen, Luftmiljö.
    Asker, Christian
    SMHI, Affärsverksamhet.
    Jones, Jörgen
    SMHI, Affärsverksamhet.
    Kindell, Sven
    SMHI, Affärsverksamhet.
    Segersson, David
    SMHI, Forskningsavdelningen, Luftmiljö.
    Luftkvalitet i Sverige år 2020: Uppföljning av miljökvalitetsmålet Frisk luft för trafikmiljöer i svenska tätorter2012Rapport (Annet vitenskapelig)
    Abstract [sv]

    Luftföroreningar är ett lokalt men också gränsöverskridande problem. Sveriges luftkvalitet påverkas av lokala utsläppskällor, men även av långdistans-transport från stora emissionsområden i Europa. Utsläppen av många luftföroreningar har minskat under de senaste årtiondena på grund av kontinuerligt skärpta emissionskrav och betydande förbättringar har gjorts för vägtransportsektorns reglerade avgasemissioner. Fortsatt minskningar är att förvänta som också påverkar luftkvaliteten. Trots kraftiga minskningar av utsläppen både i Sverige och övriga Europa har inte luftkvaliteten i våra städer, med avseende på kvävedioxid (NO2), ozon (O3) och partiklar (PM10), förbättrats på något avgörande sätt sedan år 2000. Fortfarande är luftföroreningshalterna i många trafikmiljöer höga såväl i Sverige som i övriga Europa. Syftet med projektet är att ge underlag för bedömningar av hur miljökvalitetsmålet Frisk luft uppfylls i svenska tätorter och påvisa effekter av vad olika åtgärder, såväl internationellt som i Sverige och lokalt i kommuner, kan komma att få för effekter på luftkvaliteten år 2020.

  • 124.
    Omstedt, Gunnar
    et al.
    SMHI, Forskningsavdelningen, Luftmiljö.
    Burman, L.
    SLB-analys.
    Beräkningar av kväveoxidhalter vid några gator i Umeå åren 2014 och 2022 med och utan miljözon2012Rapport (Annet vitenskapelig)
    Abstract [sv]

    Mätningar av kvävedioxid i Umeå har visat på halter som överskridit miljökvalitetsnormen. Den mest utsatta gatan är Västra Esplanaden men även utmed Östra Kyrkogatan har normen överskridits. För att minska halterna av kvävedioxid i Umeå centrum finns tankar på att inrätta miljözon. I denna rapport är tre beräkningspunkter valda utifrån gällande förutsättningar. Två av mätpunkterna ligger på Järnvägsallén respektive Östra Kyrkogatan, vilka finns inom tilltänkt zon. Den tredje ligger på Västra Esplanaden som gränsar mot zonen. De sträckor som beräknas är de mest trafikerade gatorna i Umeå centrum. I beräkningarna har hänsyn tagits till lika trafikförutsättningar och flöden för de redovisade åren.De beräkningar som redovisas i denna rapport baseras på modeller som beskriver dagens kunskap om emissioner, spridning och kemiska processer och med indata från olika alternativa trafikutvecklingar. I alla dessa delar finns det osäkerheter och felkällor som är svåra att kvantifiera. Det finns risk att emissionsutvecklingen för NOx mellanåren 2010 och 2020 är något för optimistiskt beräknad. Miljözonsberäkningarna förutsätter 100 % efterlevnad av regelverket.Nedan redovisas de viktigaste slutsatserna från beräkningarna.Västra EsplanadenUtan miljözon uppskattas halterna underskrida miljökvalitetsnormen efter år 2019. Med miljözon uppskattas halterna underskrida miljökvalitetsnormen efter år 2017, dvs. två år tidigare än utan miljözon.Järnvägsallén och Östra KyrkogatanHalterna beräknas vara något högre på Östra Kyrkogatan jämfört med Järnvägsallén. Vid Östra Kyrkogatan beräknas halterna överskrida miljökvalitetsnormen år 2010. Miljökvalitetsnormen för båda gatorna klaras såväl med som utan miljözon år 2014. Med miljözon minskar halterna jämfört utan miljözon.

  • 125.
    Kahnert, Michael
    et al.
    SMHI, Forskningsavdelningen, Luftmiljö.
    Nousiainen, Timo
    Thomas, Manu Anna
    SMHI, Forskningsavdelningen, Luftmiljö.
    Tyynela, Jani
    Light scattering by particles with small-scale surface roughness: Comparison of four classes of model geometries2012Inngår i: Journal of Quantitative Spectroscopy and Radiative Transfer, ISSN 0022-4073, E-ISSN 1879-1352, Vol. 113, nr 18, s. 86-97Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We compare four different model geometries for particles with small-scale surface roughness. The geometries are based on regular and stochastic surface perturbations, as well as on 2D- and 3D-roughness models. We further compare T-matrix and discrete dipole computations. Particle size parameters of 5 and 50 are considered, as well as refractive indices of 1.6+0.0005i and 3+0.1i. The effect of small-scale surface roughness on the intensity and polarisation of the scattered light strongly depends on the size parameter and refractive index. In general, 2D surface roughness models predict stronger effects than 3D models. Stochastic surface roughness models tend to predict the strongest depolarising effects, while regular surface roughness models can have a stronger effect on the angular distribution of the scattered intensity. Computations with the discrete dipole approximation only cover a limited range of size parameters. T-matrix computations allow us to significantly extend that range, but at the price of restricting the model particles to symmetric surface perturbations with small amplitudes. (C) 2012 Elsevier Ltd. All rights reserved.

  • 126. Nousiainen, Timo
    et al.
    Zubko, Evgenij
    Lindqvist, Hannakaisa
    Kahnert, Michael
    SMHI, Forskningsavdelningen, Luftmiljö.
    Tyynela, Jani
    Comparison of scattering by different nonspherical, wavelength-scale particles2012Inngår i: Journal of Quantitative Spectroscopy and Radiative Transfer, ISSN 0022-4073, E-ISSN 1879-1352, Vol. 113, nr 18, s. 121-135Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    It is well established that spherical and nonspherical particles scatter light differently. There are a large number of studies where scattering properties of different nonspherical particles are studied. Here we study to what degree scattering matrices of different nonspherical particles resemble each other, and whether there are significant correlations between morphological similarity and similar single-scattering properties. Altogether 15 different shapes are considered, including both irregular and regular shapes as well as homogeneous and inhomogeneous particles. For all nonspherical particles, orientation- and ensemble-averaged scattering properties are considered, and variability within each ensemble is ignored. The results reveal that different nonspherical shapes have surprisingly similar phase functions. An analysis of the asymmetry parameter reveals that the resemblance is, however, only qualitative: the phase functions are featureless and predominantly flat at side scattering, but they are nevertheless different. The degree of linear polarization for unpolarized incident light shows much larger differences among the shapes, albeit it is much more positive for all nonspherical targets than for Mie spheres. Similar to the phase function, the depolarization ratio tends to be similar among the nonspherical particle types, implying that the strength of depolarization cannot be used as a measure for the type of nonsphericity. In general, it is found that there does not seem to be a clear correlation between particle morphology and scattering properties. (C) 2012 Elsevier Ltd. All rights reserved.

  • 127.
    Devasthale, Abhay
    et al.
    SMHI, Forskningsavdelningen, Atmosfärisk fjärranalys.
    Thomas, Manu Anna
    SMHI, Forskningsavdelningen, Luftmiljö.
    An investigation of statistical link between inversion strength and carbon monoxide over Scandinavia in winter using AIRS data2012Inngår i: Atmospheric Environment, ISSN 1352-2310, E-ISSN 1873-2844, Vol. 56, s. 109-114Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Temperature inversions influence the local air quality at smaller scales and the pollution transport at larger spatio-temporal scales and are one of the most commonly observed meteorological phenomena over Scandinavia (54 degrees N-70 degrees N, 0-30 degrees E) during winter. Here, apart from presenting key statistics on temperature inversions, a large-scale co-variation of inversion strength and carbon monoxide (CO), an ideal pollution tracer, is further quantified at six vertical levels in the free troposphere during three distinct meteorological regimes that are identified based on inversion strength. Collocated temperature and CO profiles from Atmospheric Infrared Sounder (AIRS) are used for this purpose. Higher values of CO (up to 15%) are observed over Scandinavia during weakly stable regimes at all vertical levels studied, whereas lower CO values (up to 10%) are observed when inversions become stronger and elevated. The observed systematic co-variation between CO and inversion strength in three meteorological regimes is most likely explained by the efficacy of long-range transport to influence tropospheric composition over Scandinavia. We argue that this large-scale co-variation of temperature inversions and CO would be a robust metric to test coupling of large-scale meteorology and chemistry in transport models. (C) 2012 Elsevier Ltd. All rights reserved.

  • 128.
    Kahnert, Michael
    et al.
    SMHI, Forskningsavdelningen, Luftmiljö.
    Nousiainen, Timo
    Lindqvist, Hannakaisa
    Ebert, Martin
    Optical properties of light absorbing carbon aggregates mixed with sulfate: assessment of different model geometries for climate forcing calculations2012Inngår i: Optics Express, ISSN 1094-4087, E-ISSN 1094-4087, Vol. 20, nr 9Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Light scattering by light absorbing carbon (LAC) aggregates encapsulated into sulfate shells is computed by use of the discrete dipole method. Computations are performed for a UV, visible, and IR wavelength, different particle sizes, and volume fractions. Reference computations are compared to three classes of simplified model particles that have been proposed for climate modeling purposes. Neither model matches the reference results sufficiently well. Remarkably, more realistic core-shell geometries fall behind homogeneous mixture models. An extended model based on a core-shell-shell geometry is proposed and tested. Good agreement is found for total optical cross sections and the asymmetry parameter. (C) 2012 Optical Society of America

  • 129.
    Devasthale, Abhay
    et al.
    SMHI, Forskningsavdelningen, Atmosfärisk fjärranalys.
    Tjernstrom, M.
    Caian, Mihaela
    SMHI, Forskningsavdelningen, Klimatforskning - Rossby Centre.
    Thomas, Manu Anna
    SMHI, Forskningsavdelningen, Luftmiljö.
    Kahn, B. H.
    Fetzer, E. J.
    Influence of the Arctic Oscillation on the vertical distribution of clouds as observed by the A-Train constellation of satellites2012Inngår i: Atmospheric Chemistry And Physics, ISSN 1680-7316, E-ISSN 1680-7324, Vol. 12, nr 21, s. 10535-10544Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The main purpose of this study is to investigate the influence of the Arctic Oscillation (AO), the dominant mode of natural variability over the northerly high latitudes, on the spatial (horizontal and vertical) distribution of clouds in the Arctic. To that end, we use a suite of sensors on-board NASA's A-Train satellites that provide accurate observations of the distribution of clouds along with information on atmospheric thermodynamics. Data from three independent sensors are used (AQUA-AIRS, CALIOP-CALIPSO and CPR-CloudSat) covering two time periods (winter half years, November through March, of 2002-2011 and 2006-2011, respectively) along with data from the ERA-Interim reanalysis. We show that the zonal vertical distribution of cloud fraction anomalies averaged over 67-82 degrees N to a first approximation follows a dipole structure (referred to as "Greenland cloud dipole anomaly", GCDA), such that during the positive phase of the AO, positive and negative cloud anomalies are observed eastwards and westward of Greenland respectively, while the opposite is true for the negative phase of AO. By investigating the concurrent meteorological conditions (temperature, humidity and winds), we show that differences in the meridional energy and moisture transport during the positive and negative phases of the AO and the associated thermodynamics are responsible for the conditions that are conducive for the formation of this dipole structure. All three satellite sensors broadly observe this large-scale GCDA despite differences in their sensitivities, spatio-temporal and vertical resolutions, and the available lengths of data records, indicating the robustness of the results. The present study also provides a compelling case to carry out process-based evaluation of global and regional climate models.

  • 130.
    Bergström, Robert
    et al.
    SMHI, Forskningsavdelningen, Luftmiljö.
    van der Gon, H. A. C. Denier
    Prevot, A. S. H.
    Yttri, K. E.
    Simpson, D.
    Modelling of organic aerosols over Europe (2002-2007) using a volatility basis set (VBS) framework: application of different assumptions regarding the formation of secondary organic aerosol2012Inngår i: Atmospheric Chemistry And Physics, ISSN 1680-7316, E-ISSN 1680-7324, Vol. 12, nr 18, s. 8499-8527Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A new organic aerosol module has been implemented into the EMEP chemical transport model. Four different volatility basis set (VBS) schemes have been tested in long-term simulations for Europe, covering the six years 2002-2007. Different assumptions regarding partitioning of primary organic aerosol and aging of primary semi-volatile and intermediate volatility organic carbon (S/IVOC) species and secondary organic aerosol (SOA) have been explored. Model results are compared to filter measurements, aerosol mass spectrometry (AMS) data and source apportionment studies, as well as to other model studies. The present study indicates that many different sources contribute significantly to organic aerosol in Europe. Biogenic and anthropogenic SOA, residential wood combustion and vegetation fire emissions may all contribute more than 10% each over substantial parts of Europe. This study shows smaller contributions from biogenic SOA to organic aerosol in Europe than earlier work, but relatively greater anthropogenic SOA. Simple VBS based organic aerosol models can give reasonably good results for summer conditions but more observational studies are needed to constrain the VBS parameterisations and to help improve emission inventories. The volatility distribution of primary emissions is one important issue for further work. Emissions of volatile organic compounds from biogenic sources are also highly uncertain and need further validation. We can not reproduce winter levels of organic aerosol in Europe, and there are many indications that the present emission inventories substantially underestimate emissions from residential wood combustion in large parts of Europe.

  • 131. Eriksson, Charlotta
    et al.
    Nilsson, Mats E.
    Willers, Saskia M.
    Gidhagen, Lars
    SMHI, Forskningsavdelningen, Luftmiljö.
    Bellander, Tom
    Pershagen, Goran
    Traffic noise and cardiovascular health in Sweden: The roadside study2012Inngår i: Noise & Health, ISSN 1463-1741, E-ISSN 1998-4030, Vol. 14, nr 59, s. 140-147Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Long-term exposure to traffic noise has been suggested to increase the risk of cardiovascular diseases (CVD). However, few studies have been performed in the general population and on railway noise. This study aimed to investigate the cardiovascular effects of living near noisy roads and railways. This cross-sectional study comprised 25,851 men and women, aged 18-80 years, who had resided in Sweden for at least 5 years. All subjects participated in a National Environmental Health Survey, performed in 2007, in which they reported on health, annoyance reactions and environmental factors. Questionnaire data on self-reported doctors diagnosis of hypertension and/or CVD were used as outcomes. Exposure was assessed as Traffic Load (millions of vehicle kilometres per year) within 500 m around each participants residential address. For a sub-population (n = 2498), we also assessed road traffic and railway noise in L den at the dwelling facade. Multiple logistic regression models were used to assess Prevalence Odds Ratios (POR) and 95 Confidence Intervals (CI). No statistically significant associations were found between Traffic Load and self-reported hypertension or CVD. In the sub-population, there was no association between road traffic noise and the outcomes; however, an increased risk of CVD was suggested among subjects exposed to railway noise >= 50 dB(A); POR 1.55 (95 CI 1.00-2.40). Neither Traffic Load nor road traffic noise was, in this study, associated with self-reported cardiovascular outcomes. However, there was a borderline-significant association between railway noise and CVD. The lack of association for road traffic may be due to methodological limitations.

  • 132. Haapanala, Paivi
    et al.
    Raisanen, Petri
    Kahnert, Michael
    SMHI, Forskningsavdelningen, Luftmiljö.
    Nousiainen, Timo
    Sensitivity of the shortwave radiative effect of dust on particle shape: Comparison of spheres and spheroids2012Inngår i: Journal of Geophysical Research - Atmospheres, ISSN 2169-897X, E-ISSN 2169-8996, Vol. 117, artikkel-id D08201Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The sensitivity of direct shortwave radiative effects of dust (DRE) to assumed particle shape is investigated. Radiative transfer simulations are conducted using optical properties of either spheres, mass-equivalent spheroids (mass-conserving case), or (mass-equivalent) spheroids whose number concentration is modified so that they have the same midvisible optical thickness (tau(545 nm)) as spheres (tau-conserving case). The impact of particle shape on DRE is investigated for different dust particle effective radii, optical thickness of the dust cloud, solar zenith angle, and spectral surface albedo (ocean, grass, and desert). It is found that the influence of particle shape on the DRE is strongest over ocean. It also depends very strongly on the shape distribution of spheroids used, to a degree that the results for two distributions of spheroids may deviate more from each other than from those for spheres. Finally, the effects of nonsphericity largely depend on whether the mass- or tau-conserving case is considered. For example, when using a shape distribution of spheroids recommended in a recent study for approximating the single-scattering properties of dust, the DRE at the surface differs at most 5% from that from spherical particles in the mass-conserving case. This stems from compensating nonsphericity effects on optical thickness, asymmetry parameter, and single-scattering albedo. However, in the tau-conserving case, the negative DRE at the surface can be up to 15% weaker for spheroids than spheres.

  • 133.
    Langner, Joakim
    et al.
    SMHI, Forskningsavdelningen, Luftmiljö.
    Engardt, Magnuz
    SMHI, Forskningsavdelningen, Luftmiljö.
    Baklanov, A.
    Christensen, J. H.
    Gauss, M.
    Geels, C.
    Hedegaard, G. B.
    Nuterman, R.
    Simpson, D.
    Soares, J.
    Sofiev, M.
    Wind, P.
    Zakey, A.
    A multi-model study of impacts of climate change on surface ozone in Europe2012Inngår i: Atmospheric Chemistry And Physics, ISSN 1680-7316, E-ISSN 1680-7324, Vol. 12, nr 21, s. 10423-10440Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The impact of climate change on surface ozone over Europe was studied using four offline regional chemistry transport models (CTMs) and one online regional integrated climate-chemistry model (CCM), driven by the same global projection of future climate under the SRES A1B scenario. Anthropogenic emissions of ozone precursors from RCP4.5 for year 2000 were used for simulations of both present and future periods in order to isolate the impact of climate change and to assess the robustness of the results across the different models. The sensitivity of the simulated surface ozone to changes in climate between the periods 20002009 and 2040-2049 differs by a factor of two between the models, but the general pattern of change with an increase in southern Europe is similar across different models. Emissions of isoprene differ substantially between different CTMs ranging from 1.6 to 8.0 Tg yr(-1) for the current climate, partly due to differences in horizontal resolution of meteorological input data. Also the simulated change in total isoprene emissions varies substantially across models explaining part of the different climate response on surface ozone. Ensemble mean changes in summer mean ozone and mean of daily maximum ozone are close to 1 ppb(v) in parts of the land area in southern Europe. Corresponding changes of 95-percentiles of hourly ozone are close to 2 ppb(v) in the same region. In northern Europe ensemble mean for mean and daily maximum show negative changes while there are no negative changes for the higher percentiles indicating that climate impacts on O-3 could be especially important in connection with extreme summer events.

  • 134.
    Langner, Joakim
    et al.
    SMHI, Forskningsavdelningen, Luftmiljö.
    Engardt, Magnuz
    SMHI, Forskningsavdelningen, Luftmiljö.
    Andersson, Camilla
    SMHI, Forskningsavdelningen, Luftmiljö.
    European summer surface ozone 1990-21002012Inngår i: Atmospheric Chemistry And Physics, ISSN 1680-7316, E-ISSN 1680-7324, Vol. 12, nr 21, s. 10097-10105Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The impact of climate change and changes in ozone precursor emission on summer surface ozone in Europe was studied using a regional CTM over the period 1990 to 2100. Two different climate simulations under the SRES A1B scenario together with ozone precursor emission changes from the RCP4.5 scenario were used as model input. In southern Europe regional climate change leads to increasing surface ozone concentrations during April-September, but projected emission reductions in Europe have a stronger effect, resulting in net reductions of surface ozone concentrations. In northern Europe regional climate change decreases surface O-3 and reduced European emissions acts to further strengthen this trend also when including increasing hemispheric background concentrations. The European O-3 precursor emission reductions in RCP4.5 are substantial and it remains to be seen if these reductions can be achieved. There is substantial decadal variability in the simulations forced by climate variability which is important to consider when looking at changes in surface O-3 concentrations, especially until the first half of the 21st century. In order to account for changes in background O-3 future regional model studies should couple global (hemispheric) and regional CTMs forced by a consistent set of meteorological and precursor emission data.

  • 135.
    Devasthale, Abhay
    et al.
    SMHI, Forskningsavdelningen, Atmosfärisk fjärranalys.
    Thomas, Manu Anna
    SMHI, Forskningsavdelningen, Luftmiljö.
    Sensitivity of Cloud Liquid Water Content Estimates to the Temperature-Dependent Thermodynamic Phase: A Global Study Using CloudSat Data2012Inngår i: Journal of Climate, ISSN 0894-8755, E-ISSN 1520-0442, Vol. 25, nr 20, s. 7297-7307Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The main purpose of this study is to underline the sensitivity of cloud liquid water content (LWC) estimates purely to 1) the shape of computationally simplified temperature-dependent thermodynamic phase and 2) the range of subzero temperatures covered to partition total cloud condensate into liquid and ice fractions. Linear, quadratic, or sigmoid-shaped functions for subfreezing temperatures (down to -20 degrees or -40 degrees C) are often used in climate models and reanalysis datasets for partitioning total condensate. The global vertical profiles of clouds obtained from CloudSat for the 4-yr period June 2006-May 2010 are used for sensitivity analysis and the quantitative estimates of sensitivities based on these realistic cloud profiles are provided. It is found that three cloud regimes in particular-convective clouds in the tropics, low-level clouds in the northern high latitudes, and middle-level clouds over the midlatitudes and Southern Ocean-are most sensitive to assumptions on thermodynamic phase. In these clouds, the LWC estimates based purely on quadratic or sigmoid-shaped functions with a temperature range down to -20 degrees C can differ by up to 20%-40% over the tropics (in seasonal means). 10%-30% over the midlatitudes, and up to 50% over high latitudes compared to a linear assumption. When the temperature range is extended down to -40 degrees C. LWC estimates in the sigmoid case can be much higher than the above values over high-latitude regions compared to the commonly used case with quadratic dependency down to -20 C. This sensitivity study emphasizes the need to critically investigate radiative impacts of cloud thermodynamic phase assumptions in simplified climate models and reanalysis datasets.

  • 136. Schmidt, Karsten
    et al.
    Yurkin, Maxim A.
    Kahnert, Michael
    SMHI, Forskningsavdelningen, Luftmiljö.
    A case study on the reciprocity in light scattering computations2012Inngår i: Optics Express, ISSN 1094-4087, E-ISSN 1094-4087, Vol. 20, nr 21, s. 23253-23274Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The fulfillment of the reciprocity by five publicly available scattering programs is investigated for a number of different particles. Reciprocity means that the source and the observation point of a given scattering configuration can be interchanged without changing the result. The programs under consideration are either implementations of T-matrix methods or of the discrete dipole approximation. Similarities and differences concerning their reciprocity behavior are discussed. In particular, it is investigated whether and under which conditions reciprocity tests can be used to evaluate the scattering results obtained by the different programs for the given particles. (c) 2012 Optical Society of America

  • 137. Aas, W.
    et al.
    Tsyro, S.
    Bieber, E.
    Bergström, Robert
    SMHI, Forskningsavdelningen, Luftmiljö.
    Ceburnis, D.
    Ellermann, T.
    Fagerli, H.
    Froelich, M.
    Gehrig, R.
    Makkonen, U.
    Nemitz, E.
    Otjes, R.
    Perez, N.
    Perrino, C.
    Prevot, A. S. H.
    Putaud, J. -P
    Simpson, D.
    Spindler, G.
    Vana, M.
    Yttri, K. E.
    Lessons learnt from the first EMEP intensive measurement periods2012Inngår i: Atmospheric Chemistry And Physics, ISSN 1680-7316, E-ISSN 1680-7324, Vol. 12, nr 17, s. 8073-8094Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The first EMEP intensive measurement periods were held in June 2006 and January 2007. The measurements aimed to characterize the aerosol chemical compositions, including the gas/aerosol partitioning of inorganic compounds. The measurement program during these periods included daily or hourly measurements of the secondary inorganic components, with additional measurements of elemental- and organic carbon (EC and OC) and mineral dust in PM1, PM2.5 and PM10. These measurements have provided extended knowledge regarding the composition of particulate matter and the temporal and spatial variability of PM, as well as an extended database for the assessment of chemical transport models. This paper summarise the first experiences of making use of measurements from the first EMEP intensive measurement periods along with EMEP model results from the updated model version to characterise aerosol composition. We investigated how the PM chemical composition varies between the summer and the winter month and geographically. The observation and model data are in general agreement regarding the main features of PM10 and PM2.5 composition and the relative contribution of different components, though the EMEP model tends to give slightly lower estimates of PM10 and PM2.5 compared to measurements. The intensive measurement data has identified areas where improvements are needed. Hourly concurrent measurements of gaseous and particulate components for the first time facilitated testing of modelled diurnal variability of the gas/aerosol partitioning of nitrogen species. In general, the modelled diurnal cycles of nitrate and ammonium aerosols are in fair agreement with the measurements, but the diurnal variability of ammonia is not well captured. The largest differences between model and observations of aerosol mass are seen in Italy during winter, which to a large extent may be explained by an underestimation of residential wood burning sources. It should be noted that both primary and secondary OC has been included in the calculations for the first time, showing promising results. Mineral dust is important, especially in southern Europe, and the model seems to capture the dust episodes well. The lack of measurements of mineral dust hampers the possibility for model evaluation for this highly uncertain PM component. There are also lessons learnt regarding improved measurements for future intensive periods. There is a need for increased comparability between the measurements at different sites. For the nitrogen compounds it is clear that more measurements using artefact free methods based on continuous measurement methods and/or denuders are needed. For EC/OC, a reference methodology (both in field and laboratory) was lacking during these periods giving problems with comparability, though measurement protocols have recently been established and these should be followed by the Parties to the EMEP Protocol. For measurements with no defined protocols, it might be a good solution to use centralised laboratories to ensure comparability across the network. To cope with the introduction of these new measurements, new reporting guidelines have been developed to ensure that all proper information about the methodologies and data quality is given.

  • 138.
    Kahnert, Michael
    et al.
    SMHI, Forskningsavdelningen, Luftmiljö.
    Nousiainen, Timo
    Mauno, Paivi
    On the impact of non-sphericity and small-scale surface roughness on the optical properties of hematite aerosols (vol 112, pg 1815, 2011)2012Inngår i: Journal of Quantitative Spectroscopy and Radiative Transfer, ISSN 0022-4073, E-ISSN 1879-1352, Vol. 113, nr 1, s. 117-117Artikkel i tidsskrift (Fagfellevurdert)
  • 139. Simpson, D.
    et al.
    Benedictow, A.
    Berge, H.
    Bergström, Robert
    SMHI, Forskningsavdelningen, Luftmiljö.
    Emberson, L. D.
    Fagerli, H.
    Flechard, C. R.
    Hayman, G. D.
    Gauss, M.
    Jonson, J. E.
    Jenkin, M. E.
    Nyiri, A.
    Richter, C.
    Semeena, V. S.
    Tsyro, S.
    Tuovinen, J-P
    Valdebenito, A.
    Wind, P.
    The EMEP MSC-W chemical transport model - technical description2012Inngår i: Atmospheric Chemistry And Physics, ISSN 1680-7316, E-ISSN 1680-7324, Vol. 12, nr 16, s. 7825-7865Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The Meteorological Synthesizing Centre-West (MSC-W) of the European Monitoring and Evaluation Programme (EMEP) has been performing model calculations in support of the Convention on Long Range Transboundary Air Pollution (CLRTAP) for more than 30 years. The EMEP MSC-W chemical transport model is still one of the key tools within European air pollution policy assessments. Traditionally, the model has covered all of Europe with a resolution of about 50 km x 50 km, and extending vertically from ground level to the tropopause (100 hPa). The model has changed extensively over the last ten years, however, with flexible processing of chemical schemes, meteorological inputs, and with nesting capability: the code is now applied on scales ranging from local (ca. 5 km grid size) to global (with 1 degree resolution). The model is used to simulate photo-oxidants and both inorganic and organic aerosols. In 2008 the EMEP model was released for the first time as public domain code, along with all required input data for model runs for one year. The second release of the EMEP MSC-W model became available in mid 2011, and a new release is targeted for summer 2012. This publication is in-tended to document this third release of the EMEP MSC-W model. The model formulations are given, along with details of input data-sets which are used, and a brief background on some of the choices made in the formulation is presented. The model code itself is available at www.emep.int, along with the data required to run for a full year over Europe.

  • 140.
    Gidhagen, Lars
    et al.
    SMHI, Forskningsavdelningen, Luftmiljö.
    Engardt, Magnuz
    SMHI, Forskningsavdelningen, Luftmiljö.
    Lovenheim, Boel
    Johansson, Christer
    Modeling Effects of Climate Change on Air Quality and Population Exposure in Urban Planning Scenarios2012Inngår i: Advances in Meteorology, ISSN 1687-9309, E-ISSN 1687-9317, artikkel-id 240894Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We employ a nested system of global and regional climate models, linked to regional and urban air quality chemical transport models utilizing detailed inventories of present and future emissions, to study the relative impact of climate change and changing air pollutant emissions on air quality and population exposure in Stockholm, Sweden. We show that climate change only marginally affects air quality over the 20-year period studied. An exposure assessment reveals that the population of Stockholm can expect considerably lower NO2 exposure in the future, mainly due to reduced local NOx emissions. Ozone exposure will decrease only slightly, due to a combination of increased concentrations in the city centre and decreasing concentrations in the suburban areas. The increase in ozone concentration is a consequence of decreased local NOx emissions, which reduces the titration of the long-range transported ozone. Finally, we evaluate the consequences of a planned road transit project on future air quality in Stockholm. The construction of a very large bypass road (including one of the largest motorway road tunnels in Europe) will only marginally influence total population exposure, this since the improved air quality in the city centre will be complemented by deteriorated air quality in suburban, residential areas.

45678910 121 - 140 of 341
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.7
|