Change search
Refine search result
22232425262728 1201 - 1250 of 1453
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1201. Nikolopoulos, A
    et al.
    Borenäs, Karin
    SMHI, Core Services.
    Hietala, R
    Lundberg, P
    Hydraulic estimates of Denmark Strait overflow2003In: Journal of Geophysical Research, ISSN 0148-0227, E-ISSN 2156-2202, Vol. 108, no C3, article id 3095Article in journal (Refereed)
    Abstract [en]

    Upper bounds of the Denmark Strait deep-water overflow from the Nordic seas into the North Atlantic are estimated using rotating hydraulic theory. The calculations are made for the real bottom topography of the strait and are based on hydrographic sections surveyed during a dedicated field experiment in the area. Results are presented for zero as well as finite (but constant) potential vorticity, and it is shown that the differences in outcome between these two approaches are only minor. The calculated interface configurations are found to be in good agreement with those observed, and the theoretically obtained transports conform with earlier estimates.

  • 1202. Olofsson, B
    et al.
    Olsson, Esbjörn
    SMHI, Research Department, Meteorology.
    Andersson, S
    Martensson, T
    Martensson, E
    A new algorithm to estimate aircraft icing in the HIRLAM model2003In: Meteorological Applications, ISSN 1350-4827, E-ISSN 1469-8080, Vol. 10, no 2, p. 111-114Article in journal (Refereed)
    Abstract [en]

    A new index to estimate aircraft icing in clouds from operational meteorological models has been developed by Swedish meteorologists. Although rather simple it takes into account, directly or indirectly, all the principal meteorological variables for icing. The index has been evaluated during three winter seasons and is now operational in the Swedish HIRLAM model. A graphical representation of the index is presented.

  • 1203.
    Josefsson, Weine
    SMHI, Research Department, Atmospheric remote sensing.
    Quality of total ozone measured by the focused sun method using a Brewer spectrophotometer2003In: Journal of applied meteorology (1988), ISSN 0894-8763, E-ISSN 1520-0450, Vol. 42, no 1, p. 74-82Article in journal (Refereed)
    Abstract [en]

    Strong ozone depletions and large natural variations in total ozone have been observed at high latitudes. Accurate measurements of total ozone are important so as not to misinterpret the involved processes and to track correctly the variations. The primary basis for ground-based monitoring of total ozone is the network of Dobson and Brewer ozone spectrophotometers. However, these instruments have limitations. At high latitudes, the fundamental direct sun observation used by these instruments is not possible during large parts of the year. In particular, the low sun and the resulting weak signals present a challenge. The focused sun observation method can extend the possible range of measurements using the Brewer instrument. Here, this method is discussed from the point of accuracy. Direct (synchronized) validation against the fundamental direct sun method is not possible with the current instrument configuration. Alternative methods to overcome the obstacle of nonsynchronous observations are applied. An estimate of the uncertainty of the validation is provided. The results show that the focused sun method gives data that are in line with the estimated uncertainty of the validation. No major additional uncertainty is needed to explain the observed scatter. The main conclusion is that the focused sun observation method can have an uncertainty close to the fundamental direct sun method and thus can be used to extend the possible range of observation for the Brewer ozone spectrophotometer.

  • 1204.
    Meier, Markus
    SMHI, Research Department, Oceanography.
    Regional ocean climate simulations with a 3D ice-ocean model for the Baltic Sea. Part 2: results for sea ice2002In: Climate Dynamics, ISSN 0930-7575, E-ISSN 1432-0894, Vol. 19, no 3-4, p. 255-266Article in journal (Refereed)
    Abstract [en]

    The Baltic Sea ice season under changing climate conditions is investigated using a 3D coupled ice-ocean model. Results of multi-year simulations for the period of May 1980 to December 1993 are compared with observations from monitoring stations, ice charts and satellite data. The period 1980-1993 has been selected mainly because of the availability of homogeneous observational data sets for atmospheric variables and river runoff with sufficient quality to force a 3D high resolution Baltic Sea model. The observed seasonal variation of sea ice is well reproduced by the model. Furthermore, two sets of 9-year time slice experiments have been performed using results of an atmospheric regional climate model as forcing, one representing pre-industrial greenhouse conditions (control simulation), and the other a global warming with a 150% increase of equivalent CO(2) concentration (scenario simulation). At the lateral boundaries of the regional climate model, results of the global atmosphere-ocean general circulation model HadCM2 have been prescribed. In the control run, the mean seasonal cycle of ice cover and its variability is simulated realistically compared to observations, but the seasonal ice cover maximum is shifted in time by about 18 days and the simulated mean melting date is delayed. Mild winters are missing in the relatively short control run. The decrease of mean ice extent in the scenario, compared to the control run, is dramatic, reducing from 210 . 10(9) m(2) to 82 . 10(9) m(2) (a relative change of 61%). However, in all scenario years, ice is still formed in the northernmost basin of the Baltic Sea, the Bothnian Bay. The minimum ice extent is 16 . 10(9) m(2) (for comparison: the area of the Bothnian Bay is about twice as large). The mean number of ice days decreases significantly. In the fast ice zone of the Bothnian Bay the mean ice season is reduced by 40 days. The ice in the scenario run is thinner with less snow on top. In the central Bothnian Bay, mean maximum annual ice thickness is reduced by 25 cm from 54 to 29 cm. Model dependent uncertainties are discussed.

  • 1205.
    Meier, Markus
    SMHI, Research Department, Oceanography.
    Regional ocean climate simulations with a 3D ice-ocean model for the Baltic Sea. Part 1: model experiments and results for temperature and salinity2002In: Climate Dynamics, ISSN 0930-7575, E-ISSN 1432-0894, Vol. 19, no 3-4, p. 237-253Article in journal (Refereed)
    Abstract [en]

    Sea surface temperatures and salinity profiles in the Baltic Sea have been analyzed under different climate conditions using a 3D coupled ice-ocean model. As a reference, hindcast simulations for the period 1980-93 have been performed using observed three-hourly meteorological forcing fields and observed monthly river runoff. The results are compared with available observations from monitoring stations. The observed Baltic Sea climate is well reproduced by the model. Furthermore, two sets of 9-year time slice experiments have been performed using results from an atmospheric regional climate model as forcing. One of the time slice sets represents pre-industrial greenhouse conditions (control simulation), and the other set represents a global warming condition with a 150% increase in equivalent CO(2) concentrations (scenario simulation) with lateral boundary conditions from the global atmosphere-ocean general circulation model, HadCM2. To simulate river runoff, a large-scale hydrological model has been applied. As the time slices are too short to properly spin up initial stratification for future climate, salinity is treated as an uncertainty factor. An extreme condition is obtained by integrating the Baltic Sea model for a period of 100 years while assuming that no salt water inflow will occur in the future. Salinity in the Gotland Basin decreases in the surface layer by about 3 to 4 psu and in the bottom layer by about 6 to 6.5 psu. The final quasi-equilibrium is characterized by salinities of 2.8 psu (minimum at the surface) to 6.5 psu (maximum at the bottom). The area averaged annual mean sea surface temperature change between scenario and control run is about 2.3 degreesC. The warming in different seasons is almost the same. The computational effective time slice approach in dynamical downscaling experiments is regarded as a feasible technique to regionalize global climate change experiments in the Baltic Sea.

  • 1206.
    Meier, Markus
    et al.
    SMHI, Research Department, Oceanography.
    Faxen, T
    Performance analysis of a multiprocessor coupled ice-ocean model for the Baltic Sea2002In: Journal of Atmospheric and Oceanic Technology, ISSN 0739-0572, E-ISSN 1520-0426, Vol. 19, no 1, p. 114-124Article in journal (Refereed)
    Abstract [en]

    Within the Swedish Regional Climate Modelling Programme (SWECLIM) a 3D coupled ice-ocean model for the Baltic Sea has been developed to simulate physical processes on timescales of hours to decades. The model code is based on the global ocean GCM of the Ocean Circulation Climate Advanced Modelling (OCCAM) project and has been optimized for massively parallel computer architectures. The Hibler-type dynamic-thermodynamic sea ice model utilizes elastic-viscous-plastic rheology resulting in a fully explicit numerical scheme that improves computational efficiency. A detailed performance analysis shows that the ice model causes generic workload imbalance between involved processors. An improved domain partitioning technique minimizes load imbalance, but cannot solve the problem completely. However, it is shown that the total load imbalance is not more than 13% for a mild winter and about 8% for a severe winter. With respect to parallel processor performance, the code makes the best use of available computer resources.

  • 1207.
    Doescher, Ralf
    et al.
    SMHI, Research Department, Climate research - Rossby Centre.
    Willen, Ulrika
    SMHI, Research Department, Climate research - Rossby Centre.
    Jones, Colin
    SMHI, Research Department, Climate research - Rossby Centre.
    Rutgersson, Anna
    SMHI, Research Department, Climate research - Rossby Centre.
    Meier, Markus
    SMHI, Research Department, Oceanography.
    Hansson, Ulf
    SMHI, Research Department, Climate research - Rossby Centre.
    Graham, Phil
    SMHI, Research Department, Climate research - Rossby Centre.
    The development of the regional coupled ocean-atmosphere model RCAO2002In: Boreal environment research, ISSN 1239-6095, E-ISSN 1797-2469, Vol. 7, no 3, p. 183-192Article in journal (Refereed)
    Abstract [en]

    A regional coupled ocean-atmosphere-ice general circulation model for northern Europe is introduced for climate study purposes. The Baltic Sea is interactively coupled. The coupled model is validated in a 5-year hind-cast experiment with a focus on surface quantities and atmosphere-ocean heat fluxes. The coupled sea surface temperature matches observations well. The system is free of drift, does not need flux corrections and is suitable for multi-year climate runs. With flux forcing from the atmospheric model the regional ocean model gives sea surface temperatures statistically equivalent to the uncoupled ocean model forced by observations. Other oceanic surface quantities do not reach this quality in combination with the current atmosphere model. A strong dependence of sea ice extent on details of the atmospheric radiation scheme is found. Our standard scheme leads to an overestimation of ice, most likely due to a negative bias of long-wave radiation. There is indication that a latent heat flux bias in fall contributes to the ice problem. Other atmosphere-ocean heat fluxes are generally realistic in the long term mean.

  • 1208.
    Meier, Markus
    et al.
    SMHI, Research Department, Oceanography.
    Doescher, Ralf
    SMHI, Research Department, Climate research - Rossby Centre.
    Simulated water and heat cycles of the Baltic Sea using a 3D coupled atmosphere-ice - ocean model2002In: Boreal environment research, ISSN 1239-6095, E-ISSN 1797-2469, Vol. 7, no 4, p. 327-334Article in journal (Refereed)
    Abstract [en]

    The heat and water cycles of the Baltic Sea are calculated utilizing multi-year model simulations. This is one of the major objectives of the BALTEX program. For the period 1988-1993, results of a 3D ice-ocean model forced with observed atmospheric surface fields are compared with results of a fully coupled atmosphere-ice-ocean model using re-analysis data at the lateral boundaries. The state-of-the-art coupled model system has been developed for climate study purposes in the Nordic countries. The model domain of the atmosphere model covers Scandinavia, Europe and parts of the North Atlantic whereas the ocean model is limited to the Baltic Sea. The annual and monthly mean heat budgets for the Baltic Sea are calculated from the dominating surface fluxes, i.e. sensible heat, latent heat, net longwave radiation and solar radiation to the open water or to the sea ice. The main part of the freshwater inflow to the Baltic is the river runoff. A smaller part of about 11 % is added from net precipitation. The heat and water cycles are compared with the results of a long-term simulation (1980-1993) using the stand-alone Baltic Sea model forced with observed atmospheric surface fields. In general, both approaches, using the uncoupled or coupled Baltic Sea model, give realistic estimates of the heat and water cycles and are in good agreement with results of other studies. However, in the coupled model the parameterizations of the latent heat flux and the incoming longwave radiation need to be improved.

  • 1209.
    Rutgersson, Anna
    et al.
    SMHI, Research Department, Climate research - Rossby Centre.
    Omstedt, Anders
    SMHI, Research Department, Oceanography.
    Räisänen, Jouni
    SMHI, Research Department, Climate research - Rossby Centre.
    Net precipitation over the Baltic Sea during present and future climate conditions2002In: Climate Research (CR), ISSN 0936-577X, E-ISSN 1616-1572, Vol. 22, no 1, p. 27-39Article in journal (Refereed)
    Abstract [en]

    By using a process-oriented ocean model forced with data from a gridded synoptic database, net precipitation values (precipitation minus evaporation) over the Baltic Sea are obtained. For a range of realistic meteorological forcing the average annual value obtained from an 18 yr (1981-1998) simulation ranges between 1100 and 2500 m(3) s(-1). The monthly variations are significant with the highest values occurring in early summer and even negative values in late autumn. Ice is an important factor, and the net precipitation is close to zero in the southern basins with no ice. Calculated net precipitation for a 98 yr period (1901-1998) using river runoff and maximum ice extent indicates that the investigated 18 yr period was wetter than the almost 100 yr climate mean. A realistic climate estimate of net precipitation during the 20th century is estimated to be 1500 +/-1000 m(3) s(-1). The evaluation of 2 present day regional climate simulations indicated high precipitation, low evaporation, and thus excessive net precipitation compared to the climate estimate from this investigation. When simulating the effect of increased greenhouse gases, the change in net precipitation was positive but small due to the compensating effects of increased precipitation and increased evaporation associated with increased temperature and reduced ice.

  • 1210. Palmer, T N
    et al.
    Räisänen, Jouni
    SMHI, Research Department, Climate research - Rossby Centre.
    Quantifying the risk of extreme seasonal precipitation events in a changing climate2002In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 415, no 6871, p. 512-514Article in journal (Refereed)
    Abstract [en]

    Increasing concentrations of atmospheric carbon dioxide will almost certainly lead to changes in global mean climate(1). But because-by definition-extreme events are rare, it is significantly more difficult to quantify the risk of extremes. Ensemble-based probabilistic predictions(2), as used in short- and medium-term forecasts of weather and climate, are more useful than deterministic forecasts using a 'best guess' scenario to address this sort of problem(3,4). Here we present a probabilistic analysis of 19 global climate model simulations with a generic binary decision model. We estimate that the probability of total boreal winter precipitation exceeding two standard deviations above normal will increase by a factor of five over parts of the UK over the next 100 years. We find similar increases in probability for the Asian monsoon region in boreal summer, with implications for flooding in Bangladesh. Further practical applications of our techniques would be helped by the use of larger ensembles (for a more complete sampling of model uncertainty) and a wider range of scenarios at a resolution adequate to analyse average-size river basins.

  • 1211.
    Räisänen, Jouni
    SMHI, Research Department, Climate research - Rossby Centre.
    CO2-induced changes in interannual temperature and precipitation variability in 19 CMIP2 experiments2002In: Journal of Climate, ISSN 0894-8755, E-ISSN 1520-0442, Vol. 15, no 17, p. 2395-2411Article in journal (Refereed)
    Abstract [en]

    CO2-induced changes in the interannual variability of monthly surface air temperature and precipitation are studied using 19 model experiments participating in the second phase of the Coupled Model Intercomparison Project (CMIP2). The magnitude of variability in the control runs appears generally reasonable, but it varies a great deal between different models, almost all of which overestimate temperature variability on low-latitude land areas. In most models the gradual doubling of CO2 leads to a decrease in temperature variability in the winter half-year in the extratropical Northern Hemisphere and over the high-latitude Southern Ocean. Over land in low latitudes and in northern midlatitudes in summer, a slight tendency toward increased temperature variability occurs. The standard deviation of monthly precipitation increases, on average, where the mean precipitation increases but also does so in some areas where the mean precipitation decreases slightly. The coefficient of variation of precipitation (i.e., the ratio between the standard deviation and the mean) also tends to increase in most areas, especially where the mean precipitation decreases. However, the changes in variability are less similar between the 19 experiments than the changes in mean temperature and precipitation, at least partly because they have a much lower signal-to-noise ratio. In addition, the changes in the standard deviation of monthly temperature are generally much smaller than the time-mean warming, which suggests that future changes in the extremes of interannual temperature variability will be largely determined by the latter.

  • 1212.
    Gustafsson, Nils
    SMHI, Research Department, Meteorology.
    Statistical issues in weather forecasting2002In: Scandinavian Journal of Statistics, ISSN 0303-6898, E-ISSN 1467-9469, Vol. 29, no 2, p. 219-239Article in journal (Refereed)
    Abstract [en]

    Research and operational applications in weather forecasting are reviewed, with emphasis on statistical issues. It is argued that the deterministic approach has dominated in weather forecasting, although weather forecasting is a probabilistic problem by nature. The reason has been the successful application of numerical weather prediction techniques over the 50 years since the introduction of computers. A gradual change towards utilization of more probabilistic methods has occurred over the last decade; in particular meteorological data assimilation, ensemble forecasting and post-processing of model output have been influenced by ideas from statistics and control theory.

  • 1213. Bennartz, R
    et al.
    Thoss, Anke
    SMHI, Research Department, Atmospheric remote sensing.
    Dybbroe, Adam
    SMHI, Core Services.
    Michelson, Daniel
    SMHI, Core Services.
    Precipitation analysis using the Advanced Microwave Sounding Unit in support of nowcasting applications2002In: Meteorological Applications, ISSN 1350-4827, E-ISSN 1469-8080, Vol. 9, no 2, p. 177-189Article in journal (Refereed)
    Abstract [en]

    We describe a method to remotely sense precipitation and classify its intensity over water, coasts and land surfaces. This method is intended to be used in an operational nowcasting environment. It is based on data obtained from the Advanced Microwave Sounding Unit (AMSU) onboard NOAA-15. Each observation is assigned a probability of belonging to four classes: precipitation-free, risk of precipitation, precipitation between 0.5 and 5 mm/h, and precipitation higher than 5 mm/h. Since the method is designed to work over different surface types, it relies mainly on the scattering signal of precipitation-sized ice particles received at high frequencies. For the calibration and validation of the method we use an eight-month dataset of combined weather radar and AMSU data obtained over the Baltic area. We compare results for the AMSU-B channels at 89 GHz and 150 GHz and find that the high frequency channel at 150 GHz allows for a much better discrimination of different types of precipitation than the 89 GHz channel. While precipitation-free areas, as well as heavily precipitating areas (> 5 mm/h), can be identified to high accuracy, the intermediate classes are more ambiguous. This stems from the ambiguity of the passive microwave observations as well as from the non-perfect matching of the different data sources and sub-optimal radar adjustment. In addition to a statistical assessment of the method's accuracy, we present case studies to demonstrate its capabilities to classify different types of precipitation and to work over highly structured, inhomogeneous surfaces.

  • 1214.
    Kjellström, Erik
    et al.
    SMHI, Research Department, Climate research - Rossby Centre.
    Holmen, K
    Eneroth, K
    Engardt, Magnuz
    SMHI, Research Department, Air quality.
    Summertime Siberian CO2 simulations with the regional transport model MATCH: a feasibility study of carbon uptake calculations from EUROSIB data2002In: Tellus. Series B, Chemical and physical meteorology, ISSN 0280-6509, E-ISSN 1600-0889, Vol. 54, no 5, p. 834-849Article in journal (Refereed)
    Abstract [en]

    Biogenic surface fluxes Of CO2 over Europe and Siberia are implemented in the regional tracer transport model MATCH. A systematic comparison between simulated and observed CO2 fluxes and mixing ratios is performed for two observational sites in Russia taking into account both surface observations and vertical profiles of meteorological parameters and CO2 in the lowest 3 km from the summer months in 1998. We find that the model is able to represent meteorological parameters as temperature, humidity and planetary boundary layer height consistent with measurements. Further, it is found that the simulated surface CO2 fluxes capture a large part of the observed variability on a diurnal time scale. On a synoptic time scale the agreement between observations and simulation is poorer which leads to a disagreement between time series of observed and simulated CO2 mixing ratios. However, the model is able to realistically simulate the vertical gradient in CO2 in the lowest few kilometres. The vertical variability is studied by means of trajectory analysis together with results from the MATCH model. This analysis clearly illustrates some problems in deducing CO2 fluxes from CO2 mixing ratios measured in single vertical profiles. Studies of the regional variability Of CO2 in the model domain show that there exists no ideal vertical level for detecting the terrestrial signal Of CO2 in the free troposphere. The strongest terrestrial signal is found in the boundary layer above the lowest few hundred metres. Nevertheless, this terrestrial signal is small, and during the simulated period it is not possible to detect relative variations in the surface fluxes smaller than 20%. We conclude that a regional flux cannot be determined from single ground stations or a few vertical profiles, mainly due to synoptic scale variability in transport and in CO2 surface fluxes.

    Download full text (pdf)
    fulltext
  • 1215. Carmichael, G R
    et al.
    Calori, G
    Hayami, H
    Uno, I
    Cho, S Y
    Engardt, Magnuz
    SMHI, Research Department, Air quality.
    Kim, S B
    Ichikawa, Y
    Ikeda, Y
    Woo, J H
    Ueda, H
    Amann, M
    The MICS-Asia study: model intercomparison of long-range transport and sulfur deposition in East Asia2002In: Atmospheric Environment, ISSN 1352-2310, E-ISSN 1873-2844, Vol. 36, no 2, p. 175-199Article in journal (Refereed)
    Abstract [en]

    An intercomparison study involving eight long-range transport models for sulfur deposition in East Asia has been initiated, The participating models included Eulerian and Lagrangian frameworks, with a wide variety of vertical resolutions and numerical approaches. Results from this study, in which models used common data sets for emissions, meteorology, and dry, wet and chemical conversion rates, are reported and discussed. Model results for sulfur dioxide and sulfate concentrations, wet deposition amounts, for the period January and May 1993, are compared with observed quantities at 18 surface sites in East Asia. At many sites the ensemble of models is found to have high skill in predicting observed quantities. At other sites all models show poor predictive capabilities. Source-receptor relationships estimated by the models are also compared. The models show a high degree of consistency in identifying the main source-receptor relationships, as well as in the relative contributions of wet/dry pathways for removal. But at some locations estimated deposition amounts can vary by a factor or 5. The influence of model structure and parameters on model performance is discussed. The main factors determining the deposition fields are the emissions and underlying meteorological fields. Model structure in terms of vertical resolution is found to be more important than the parameterizations used for chemical conversion and removal, as these processes are highly coupled and often work in compensating directions. (C) 2002 Elsevier Science Ltd. All rights reserved.

  • 1216. Leck, C
    et al.
    Heintzenberg, J
    Engardt, Magnuz
    SMHI, Research Department, Air quality.
    A meridional profile of the chemical composition of submicrometre particles over the East Atlantic Ocean: regional and hemispheric variabilities2002In: Tellus. Series B, Chemical and physical meteorology, ISSN 0280-6509, E-ISSN 1600-0889, Vol. 54, no 4, p. 377-394Article in journal (Refereed)
    Abstract [en]

    Within the framework of SWEDARP (Swedish Antarctic Program) 92,93 an aerosol sampling program was carried out on board of M/S Palarbjorn which carried staff and material to the Nordic Antarctic Field exercises during the Austral summer 1992/1993. The cruise started 11 November 1992 from Oslo, went via Cape Town to Antarctica, and then back to Cape Town ,here the ship arrived on 4 January 1993. During the cruise, a meridional profile of physical and chemical submicrometre aerosol properties was derived covering the East Atlantic Ocean from 60degreesN to 70degreesS. The multicomponent aerosol data set combined with a trajectory analysis revealed a systematic meridional distribution of aerosol sources over the Atlantic that covered European and African continental Plumes and, South of 15degreesS, a largely biologically controlled marine aerosol. Median number concentrations calculated over the whole cruise spanned a factor of 20 between 2000 and 100 cm(-3), while total analyzed mass concentrations ranged between 7800 and 40 ng m(3). From the biologically dominated subset of the data in the southern hemisphere, relationships were developed that allowed an apportionment of the observed sulfate and ammonium concentration to biogenic and anthropogenic Sources over the whole meridional aerosol profile.

    Download full text (pdf)
    fulltext
  • 1217. Blenckner, T
    et al.
    Omstedt, Anders
    SMHI, Research Department, Oceanography.
    Rummukainen, Markku
    SMHI, Research Department, Climate research - Rossby Centre.
    A Swedish case study of contemporary and possible future consequences of climate change on lake function2002In: Aquatic Sciences, ISSN 1015-1621, E-ISSN 1420-9055, Vol. 64, no 2, p. 171-184Article in journal (Refereed)
    Abstract [en]

    A physical lake model was employed to obtain a basis of discussing the impact of climate variability and climate change on the ecology of Lake Erken, Sweden. The validity of this approach was tested by running the PROBE-lake model for a 30-year period (STD) with observed meteorological data. The lake is adequately modelled, as seen in the comparison with actual lake observations. The validated lake model was then forced with meteorological data obtained from a regional climate model (RCM) with a horizontal resolution of 44 km for present (CLTR) and 2 x CO(2) (SCEN) climate conditions. The CUR lake simulation compares reasonably with the STD. Applying the SCEN simulation leads to a climate change scenario for the lake. The physical changes include elevated temperatures, shorter periods of ice cover combined with two of ten years being totally ice-free, and changes in the mixing regime. The ecological consequences of the physical simulation results are derived from the historical dataset of Lake Erken. Consequences of a warmer climate could imply increased nutrient cycling and lake productivity. The results suggest that an application of RCMs with a suitable resolution for lakes in combination with physical lake models allows projection of the responses of lakes to a future climate.

  • 1218. Gregory, P J
    et al.
    Ingram, J S I
    Andersson, R
    Betts, R A
    Brovkin, V
    Chase, T N
    Grace, P R
    Gray, A J
    Hamilton, N
    Hardy, T B
    Howden, S M
    Jenkins, A
    Meybeck, M
    Olsson, M
    Ortiz-Monasterio, I
    Palm, C A
    Payn, T W
    Rummukainen, Markku
    SMHI, Research Department, Climate research - Rossby Centre.
    Schulze, R E
    Thiem, M
    Valentin, C
    Wilkinson, M J
    Environmental consequences of alternative practices for intensifying crop production2002In: Agriculture, Ecosystems & Environment, ISSN 0167-8809, E-ISSN 1873-2305, Vol. 88, no 3, p. 279-290Article in journal (Refereed)
  • 1219.
    Axell, Lars
    SMHI, Research Department, Oceanography.
    Wind-driven internal waves and Langmuir circulations in a numerical ocean model of the southern Baltic Sea2002In: Journal of Geophysical Research, ISSN 0148-0227, E-ISSN 2156-2202, Vol. 107, no C11, article id 3204Article in journal (Refereed)
    Abstract [en]

    [1] A one-dimensional numerical ocean model of the southern Baltic Sea is used to investigate suitable parameterizations of unresolved turbulence and compare with available observations. The turbulence model is a k-epsilon model that includes extra source terms P-IW and P-LC of turbulent kinetic energy (TKE) due to unresolved, breaking internal waves and Langmuir circulations, respectively. As tides are negligible in the Baltic Sea, topographic generation of internal wave energy (IWE) is neglected. Instead, the energy for deepwater mixing in the Baltic Sea is provided by the wind. At each level the source term P-IW is assumed to be related to a vertically integrated pool of IWE, E-0, and the buoyancy frequency N at the same level, according to P-IW (z) proportional to E0Ndelta (z). This results in vertical profiles of epsilon (the dissipation rate of TKE) and K-h (the eddy diffusivity) according to epsilon proportional to N-delta and K-h proportional to Ndelta-2 below the main pycnocline. Earlier observations are inconclusive as to the proper value of delta, and here a range of values of delta is tested in hundreds of 10-year simulations of the southern Baltic Sea. It is concluded that delta = 1.0 +/- 0.3 and that a mean energy flux density to the internal wave field of about (0.9 +/- 0.3) x 10(-3) W m(-2) is needed to explain the observed salinity field. In addition, a simple wind-dependent formulation of the energy flux to the internal wave field is tested, which has some success in describing the short- and long-term variability of the deepwater turbulence. The model suggests that similar to16% of the energy supplied to the surface layer by the wind is used for deepwater mixing. Finally, it is also shown that Langmuir circulations are important to include when modeling the oceanic boundary layer. A simple parameterization of Langmuir circulations is tuned against large-eddy simulation data and verified for the Baltic Sea.

  • 1220.
    Lindström, Göran
    et al.
    SMHI, Research Department, Hydrology.
    Bishop, K
    Lofvenius, M O
    Soil frost and runoff at Svartberget, northern Sweden - measurements and model analysis2002In: Hydrological Processes, ISSN 0885-6087, E-ISSN 1099-1085, Vol. 16, no 17, p. 3379-3392Article in journal (Refereed)
    Abstract [en]

    The effect of soil frost on runoff was investigated using a comprehensive data set collected at the Svartberget Experimental Forest, near Vindeln, Vasterbotten in northern Sweden. Measurements of snow depth, soil temperature, frost depth and other climate parameters have been made at three sites since 1981, as part of a long-term climate monitoring programme. Simulation residuals from the HBV rainfall-runoff model, in which no effect of soil frost is assumed, were compared with 16 years of measured soil frost conditions. A simple model for simulation of soil frost depth was developed and incorporated into the HBV model. The model parameters were calibrated to observations of snow depth, soil frost depth, groundwater levels and runoff, by use of a simple weighted optimization criterion. No clear effect of soil frost could be seen on the timing and magnitude of runoff in this analysis, or when analysing data on the conservative oxygen isotope O-18. The soil at the forested site froze in only slightly more than half the years, despite the high latitude and low winter temperatures. Furthermore, the soil had often thawed before the start of the spring flood. Almost all spring floods, therefore, occurred when the soil was unfrozen. Snow depth and soil frost depths were inversely related, with the deepest soil frost during winters with little snow. Soil frost therefore is unlikely to aggravate the very high floods in forested basins of this type, except perhaps under exceptional circumstances such as large rain events on frozen ground. Copyright (C) 2002 John Wiley Sons, Ltd.

  • 1221.
    Olsson, Jonas
    et al.
    SMHI, Research Department, Hydrology.
    Persson, M
    Albergel, J
    Berndtsson, R
    Zante, P
    Ohrstrom, P
    Nasri, S
    Multiscaling analysis and random cascade modeling of dye infiltration2002In: Water resources research, ISSN 0043-1397, E-ISSN 1944-7973, Vol. 38, no 11, article id 1263Article in journal (Refereed)
    Abstract [en]

    [1] We aimed at investigating whether the spatial variability of infiltration in field soils, as visualized through dye infiltration experiments, is characterized by a multiscaling behavior. Digitized high-resolution dye images from three sites in an experimental catchment in Tunisia were analyzed using three indicators of scaling: empirical probability distribution functions, power spectra, and raw statistical moments. The two former indicators suggested a general scaling behavior of the data, which through the moments' analysis was found to be of multiscaling type. Random cascade processes are frequently used to model multiscaling processes, and we fitted the "universal multifractal'' (UM) model of Schertzer and Lovejoy [1987] to our data. The UM model closely reproduced the empirical K(q) functions, and simulated fields reproduced key features in the observed ones. The results indicate that multiscaling random cascade modeling is useful for statistically describing flow processes and solute transport under field conditions.

  • 1222.
    Arheimer, Berit
    et al.
    SMHI, Research Department, Hydrology.
    Wittgren, H B
    Modelling nitrogen removal in potential wetlands at the catchment scale2002In: Ecological Engineering: The Journal of Ecotechnology, ISSN 0925-8574, E-ISSN 1872-6992, Vol. 19, no 1, p. 63-80Article in journal (Refereed)
    Abstract [en]

    The reduction of nitrogen fluxes from land to sea is an important task in areas with estuarine or marine eutrophication. Wetland creation has been proposed as one method to reduce nitrogen from streams draining agricultural areas. In this study, a scenario of nitrogen removal in created wetlands was evaluated by mathematical modelling of nitrogen fluxes in a catchment (224 km(2)) in southern Sweden. The scenario was based on topographically realistic siting of 40 potential wetlands with a total area of 0.92 km(2) (0.4% of the catchment area). Nitrogen removal in the wetlands was described with a simple and robust first-order model, which was modified and evaluated against data from eight monitored surface-flow wetlands. However, the modifications gave no substantial support for changing the basic model. For catchment-scale modelling this wetland model was incorporated into a dynamic process-based catchment model (HBV-N). The catchment was then divided to several coupled subbasins, so that the wetland influence on nitrogen load could be estimated separately for each potential wetland. The modelling showed that the 40 potential wetlands would reduce the nitrogen transport to the coast with approximately 6%. Specific removal rates ranged between 57 and 466 kg ha(-1) yr(-1) for the different wetlands, depending on residence time (size and hydraulic loading) and nitrogen concentration in inflow. Due to temperature dependence and seasonal variation in water discharge, significant decrease in nitrogen concentrations mainly occurred during summer periods with low loading. The study illustrates that catchment modelling is a useful method for analysing wetland creation plans, and that wetland creation must cover fairly large areas and be combined with other measures in order to achieve substantial reduction of nitrogen fluxes to coastal waters. Further monitoring of existing wetlands will improve the removal expression and decrease uncertainty. For instance, at present it could not be deducted whether wetlands with low average residence times ( < 2 days) have net removal or net resuspension on an annual basis. (C) 2002 Elsevier Science B.V. All rights reserved.

  • 1223.
    Bergström, Sten
    et al.
    SMHI, Research Department, Hydrology.
    Lindström, Göran
    SMHI, Research Department, Hydrology.
    Pettersson, Anna
    SMHI, Research Department, Hydrology.
    Multi-variable parameter estimation to increase confidence in hydrological modelling2002In: Hydrological Processes, ISSN 0885-6087, E-ISSN 1099-1085, Vol. 16, no 2, p. 413-421Article in journal (Refereed)
    Abstract [en]

    The expanding use and increased complexity of hydrological runoff models has given rise to a concern about overparameterization and risks for compensating errors. One proposed way out is the calibration and validation against additional observations, such as snow, soil moisture, groundwater or water quality. A general problem, however, when calibrating the model against more than one variable is the strategy for parameter estimation. The most straightforward method is to calibrate the model components sequentially. Recent results show that in this way the model may be locked up in a parameter setting, which is good enough for one variable but excludes proper simulation of other variables. This is particularly the case for water quality modelling, where a small compromise in terms of runoff simulation may lead to dramatically better simulations of water quality. This calls for an integrated model calibration procedure with a criterion that integrates more aspects on model performance than just river runoff. The use of multi-variable parameter estimation and internal control of the HBV hydrological model is discussed and highlighted by two case studies. The first example is from a forested basin in northern Sweden and the second one is from an agricultural basin in the south of the country. A new calibration strategy, which is integrated rather than sequential, is proposed and tested. It is concluded that comparison of model results with more measurements than only runoff can lead to increased confidence in the physical relevance of the model, and that the new calibration strategy can be useful for further model development. Copyright (C) 2002 John Wiley Sons, Ltd.

  • 1224. van den Hurk, B J J M
    et al.
    Graham, Phil
    SMHI, Research Department, Climate research - Rossby Centre.
    Viterbo, P
    Comparison of land surface hydrology in regional climate simulations of the Baltic Sea catchment2002In: Journal of Hydrology, ISSN 0022-1694, E-ISSN 1879-2707, Vol. 255, no 1-4, p. 169-193Article in journal (Refereed)
    Abstract [en]

    Simulations with a regional climate model RACMO were carried out over the catchment area of the Baltic Sea for the growing season 1995. Two different surface schemes were included which in particular differed with respect to the parameterization of runoff. In the first scheme (taken from ECHAM4), runoff is a function of the subgrid distribution of the soil moisture saturation. In the second model (taken from ECMWF), runoff is a result of deep-water drainage. A large-scale hydrological model of the catchment, HBV-Baltic, was calibrated to river discharge data and forced with observed precipitation, yielding independent comparison material of runoff of the two RACMO simulations. The simulations showed that the temporal and spatial simulation of precipitation in the area is sensitive to the choice of the land surface scheme in RACMO. This supported the motivation of analysing the land surface hydrological budgets in a coupled mode. The comparison of RACMO with HBV-Baltic revealed that the frequency distribution of runoff in the ECMWF scheme shows very little runoff variability at high frequencies, while in ECHAM4 and HBV the snow melt and (liquid) precipitation are followed by fast responding runoff events. The seasonal cycle of soil water depletion and surface evaporation was evaluated by comparison of model scores with respect to relative humidity. Results suggest that the surface evaporation in the ECMWF scheme is too strong in late spring and early summer, giving rise to too much drying later in the season. (C) 2002 Elsevier Science B.V. All rights reserved.

  • 1225.
    Olsson, Jonas
    et al.
    SMHI, Research Department, Hydrology.
    Burlando, P
    Reproduction of temporal scaling by a rectangular pulses rainfall model2002In: Hydrological Processes, ISSN 0885-6087, E-ISSN 1099-1085, Vol. 16, no 3, p. 611-630Article in journal (Refereed)
    Abstract [en]

    The presence of scaling statistical properties in temporal rainfall has been well established in many empirical investigations during the latest decade. These properties have more and more come to be regarded as a fundamental feature of the rainfall process. How to best use the scaling properties for applied modelling remains to be assessed, however, particularly in the case of continuous rainfall time-series. One therefore is forced to use conventional time-series modelling, e.g. based on point process theory, which does not explicitly take scaling into account. In light of this, there is a need to investigate the degree to which point-process models are able to unintentionally reproduce the empirical scaling properties. In the present study, four 25-year series of 20-min rainfall intensities observed in Arno River basin, Italy, were investigated. A Neyman-Scott rectangular pulses (NSRP) model was fitted to these series, so enabling the generation of synthetic time-series suitable for investigation. A multifractal scaling behaviour was found to characterize the raw data within a range of time-scales between approximately 20 min and 1 week. The main features of this behaviour were surprisingly well reproduced in the simulated data, although some differences were observed, particularly at small scales below the typical duration of a rain cell. This suggests the possibility of a combined use of the NSRP model and a scaling approach, in order to extend the NSRP range of applicability for simulation purposes, Copyright (C) 2002 John Wiley Sons, Ltd.

  • 1226. Cederwall, K
    et al.
    Brandt, Maja
    SMHI, Research Department, Hydrology.
    Workshop 6 (synthesis): linking between flood risks and land use changes2002In: Water Science and Technology, ISSN 0273-1223, E-ISSN 1996-9732, Vol. 45, no 8, p. 181-182Article in journal (Refereed)
    Abstract [en]

    Land use changes, such as deforestation, are increasing the world's vulnerability to flooding. Detailed knowledge of the local situation is essential for risk assessment and design of effective flood prevention measures and governs the infrastructure and engineering measures implemented. However extreme floods in large catchments can overwhelm both natural capacity and constructed flood management measures.

  • 1227. Olivares, G
    et al.
    Gallardo, L
    Langner, Joakim
    SMHI, Research Department, Air quality.
    Aarhus Andrae, Bodil
    SMHI, Core Services.
    Regional dispersion of oxidized sulfur in Central Chile2002In: Atmospheric Environment, ISSN 1352-2310, E-ISSN 1873-2844, Vol. 36, no 23, p. 3819-3828Article in journal (Refereed)
    Abstract [en]

    Chile has a long tradition of exploiting mineral resources, particularly copper (Cu). One of the largest Cu smelters, Caletones, located some 150 km south of the country's capital, Santiago, in Central Chile, is responsible for about 0.4% of about 70 Tg S/yr oxidized sulfur (SOx) emitted by anthropogenic sources worldwide. Santiago, a megacity with 5 million inhabitants, stands for about 5 Gg S/yr. The average meteorological conditions are unfavorable for the dispersion of pollutants in this area. All this poses risks for human health and vegetation. Also, downwind. from these polluted areas there may be large-scale impacts on cloud properties and on oxidative cycles. Here, we present the first attempt to assess the regional distribution of SOx in Central Chile using a dispersion model (MATCH) driven with data from a limited area weather forecast model (HIRLAM). Emphasis has been given to the impact of Cu smelters upon urban air quality, particularly that of Santiago. Six 1-month long periods were simulated for the years 1997, 1998 and 1999. These periods span over a broad range of typical meteorological conditions in the area including El Nino and La Nina years. Estimates of the regional dispersion and deposition patterns were calculated. The emissions from the large Cu smelters dominate the distribution of SOx. A budget of SOx over an area of 200 x 200 km 2 around Santiago is presented. There is too low a number of monitoring stations to perform a detailed evaluation of MATCH. Nevertheless, the model reproduces consistently all the regional-scale characteristics that can be derived from the available observations. (C) 2002 Published by Elsevier Science Ltd.

  • 1228.
    Gidhagen, Lars
    et al.
    SMHI, Research Department, Air quality.
    Kahelin, H
    Schmidt-Thome, P
    Johansson, C
    Anthropogenic and natural levels of arsenic in PM10 in Central and Northern Chile2002In: Atmospheric Environment, ISSN 1352-2310, E-ISSN 1873-2844, Vol. 36, no 23, p. 3803-3817Article in journal (Refereed)
    Abstract [en]

    A few copper and gold smelters in Chile are behind a large fraction of global arsenic emissions, raising concerns for increased concentrations of arsenic in PM10 in Central and Northern Chile. This concern is amplified by the fact that Northern Chile soils and rivers in general are characterized by a high arsenic content. A monitoring and modeling study has been performed to quantify the regional impact of the smelter emissions. Measured atmospheric arsenic concentrations from 2.4 to 30.7 ng m(-3) were found at seven rural stations, located tens to hundreds of kilometers away from the nearest smelter. Analyses of topsoil and subsoil samples taken from PM 10 monitoring stations revealed levels up to 291 mg kg(-1), the highest values found in the northern Atacama desert in Chile. An absolute principal component analysis of selected trace elements in PM10 shows that the regional impact of anthropogenic smelter emissions on airborne arsenic concentrations is more important than the effect of soil dust resuspension. The dominance of the smelter emissions is larger in Central Chile than in the northern parts. The impact of resuspended soil dust on airborne arsenic levels in rural areas was estimated not to exceed 5 ng m(-3). The model calculations support the dominant role of anthropogenic emissions and give spatial and temporal variations in atmospheric concentrations consistent with the monitored levels at five of the seven stations. At two of the northernmost stations indications were found of unidentified sources other than the smelters and the resuspended soil dust, contributing to about 5 ng m(-3) of total arsenic levels. The study confirms that a strong control or elimination of arsenic emissions from the smelters would lead to arsenic in PM10 levels in Northern and Central Chile comparable to non-polluted areas in other countries. (C) 2002 Elsevier Science Ltd. All rights reserved.

  • 1229. Gallardo, L
    et al.
    Olivares, G
    Langner, Joakim
    SMHI, Research Department, Air quality.
    Aarhus Andrae, Bodil
    SMHI, Core Services.
    Coastal lows and sulfur air pollution in Central Chile2002In: Atmospheric Environment, ISSN 1352-2310, E-ISSN 1873-2844, Vol. 36, no 23, p. 3829-3841Article in journal (Refereed)
    Abstract [en]

    Air pollutants in Santiago (33.5degreesS, 70.8degreesW, 500m a.s.l.), a city with 5 million inhabitants, located in a basin in Central Chile surrounded by the high Andes, frequently exceed air quality standards. This affects human health and it stresses vegetation. The most extreme winter and fall pollution events occur when the subsident regime of the Pacific high is further enhanced by coastal lows (CLs), which bring down the base of the subsidence inversion. Under these conditions, the air quality worsens significantly giving rise to acute air pollution episodes. We assess the ability of a regional transport/chemistry/deposition model (MATCH) coupled to a meteorological model (High Resolution Limited Area Model-HIRLAM) to simulate the evolution of oxidized sulfur (SOx) in connection with intensive CLs. We focus on SOx since it is an environmental issue of concern, and the emissions and concentrations of SOx have been regularly monitored making it easier to bracket model outputs for SOx than for other pollutants. Furthermore, the SOx emissions in the area are very large, i.e., about 0.4% of the global anthropogenic sources. Comparisons with observations indicate that the combination of HIRLAM and MATCH is a suitable tool for describing the regional patterns of dispersion associated with CLs. However, the low number and the limited geographical coverage of reliable air quality data preclude a complete evaluation of the model. Nevertheless, we show evidence of an enhanced contribution of the largest copper smelter in the area, i.e., Caletones, to the burden of SOx in the Santiago basin, especially in the form of sulfate associated to fine particles (diameters < 2.5 mum), during CLs. Further, we speculate that the Caletones plume may trigger or promote secondary aerosol formation during CLs in the Santiago basin. (C) 2002 Elsevier Science Ltd. All rights reserved.

  • 1230. Heinemann, G
    et al.
    Klein, Thomas
    SMHI, Core Services.
    Modelling and observations of the katabatic flow dynamics over Greenland2002In: Tellus. Series A, Dynamic meteorology and oceanography, ISSN 0280-6495, E-ISSN 1600-0870, Vol. 54, no 5, p. 542-554Article in journal (Refereed)
    Abstract [en]

    The katabatic wind system over the Greenland ice sheet is studied using simulations of the hydrostatic Norwegian Limited Area Model (NORLAM) and measurements of an instrumented aircraft. The structure and the dynamics of the katabatic wind over the ice sheet are investigated for a case study of the aircraft-based experiment KABEG (Katabatic wind and boundary layer front experiment around Greenland) in the area of southern Greenland in April/May 1997. Monthly mean Structures and individual contributions of the momentum budget integrated over the boundary layer are examined for one winter month. The NORLAM is able to simulate realistically the Structures of the katabatic wind system in the lowest 400 in. The comparison with KABEG aircraft measurements for a katabatic wind case with strong synoptic forcing shows good agreement for the momentum budget terms. The pure katabatic force represents the main mechanism for the boundary layer wind field. but a considerable influence of the large-scale synoptic forcing is found as well. Acceleration components from the NORLAM forecasts are also presented for the whole month of January 1990. The monthly mean fields show significant regional differences because of different inversion strengths and synoptic forcings. In particular. Southeast Greenland is influenced by transient synoptic cyclones and the associated cloud patterns. All other areas of the slopes of the Greenland ice sheet are characterized by a downslope katabatic acceleration. The pressure gradient force over the northwestern part of the Greenland ice sheet points in the direction of the local katabatic force, which explains the relatively strong monthly mean near surface winds over the ice. Over the southwestern and northeastern parts of Greenland, however, no significant synoptic support of the katabatic winds is present, and the synoptic pressure gradient is even opposed to the katabatic force in some regions.

    Download full text (pdf)
    fulltext
  • 1231. Koistinen, J
    et al.
    Michelson, Daniel
    SMHI, Core Services.
    BALTEX weather radar-based precipitation products and their accuracies2002In: Boreal environment research, ISSN 1239-6095, E-ISSN 1797-2469, Vol. 7, no 3, p. 253-263Article in journal (Refereed)
    Abstract [en]

    This paper briefly reviews the measurement of precipitation by radar, discusses factors affecting the accuracy of such measurements, and outlines how such factors may be dealt with to improve the quality of precipitation measurements by radar for the purposes of the Baltic Sea Experiment (BALTEX). Precipitation products from the BALTEX Radar Network (BALTRAD) are then briefly presented, along with descriptions of how their qualities are improved, as are some new results on their accuracies. Intelligent compositing of data from a heterogeneous network, combined with innovative quality control, is shown to give high quality high resolution information for monitoring relative precipitation variability simultaneously over land and sea in both time and space. Gauge adjustment of radar-derived accumulated precipitation is shown to efficiently minimize the radar data's bias with increasing distance, thus yielding quantitatively useful datasets for application by the BALTEX community.

  • 1232. Fortelius, C
    et al.
    Andrae, Ulf
    SMHI, Research Department, Meteorology.
    Forsblom, M
    The BALTEX regional reanalysis project2002In: Boreal environment research, ISSN 1239-6095, E-ISSN 1797-2469, Vol. 7, no 3, p. 193-201Article in journal (Refereed)
    Abstract [en]

    The BALTEX regional reassimilation project uses meteorological data assimilation for quantifying the climatic energy and water cycles over the catchment basin of the Baltic Sea during the course of one annual cycle, Sep. 1999-Oct. 2000. This report presents the data assimilation system used, the available products, and a sample of preliminary results. The latter demonstrate that the system is capable of simulating the essential features of the energy and water cycles of the Baltic drainage basin. We find this encouraging, because the model has not been tuned to reproduce these cycles, but mainly to predict the atmospheric state.

  • 1233. Zilitinkevich, S S
    et al.
    Perov, Veniamin
    SMHI, Research Department, Meteorology.
    King, J C
    Near-surface turbulent fluxes in stable stratification: Calculation techniques for use in general-circulation models2002In: Quarterly Journal of the Royal Meteorological Society, ISSN 0035-9009, E-ISSN 1477-870X, Vol. 128, no 583, p. 1571-1587Article in journal (Refereed)
    Abstract [en]

    Practically oriented flux-calculation techniques based on correction functions to the neutral drag and heat/mass transfer coefficients are further developed. In the traditional formulation, the correction functions depend only on the bulk Richardson number. However, data from measurements of turbulent fluxes and mean profiles in stable stratification over different sites exhibit too strong variability in this type of dependencies. Indirect evidence from climate and weather prediction modelling also shows that the traditional flux-calculation technique is not sufficiently advanced. It is conceivable that other mechanisms besides the surface-layer stratification and, therefore, other arguments besides the bulk Richardson number must be considered. The proposed technique includes a newly discovered effect of the static stability in the free atmosphere on the surface-layer scaling and accounts for the general essential difference between the roughness lengths for momentum and scalars. Besides bulk Richardson number, recommended correction functions depend oil one more stability parameter. involving the Brunt-Vaisala frequency in the free atmosphere, and on the roughness lengths.

  • 1234. Tilmes, S
    et al.
    Brandt, J
    Flatoy, F
    Bergström, Robert
    SMHI, Research Department, Air quality.
    Flemming, J
    Langner, Joakim
    SMHI, Research Department, Air quality.
    Christensen, J H
    Frohn, L M
    Hov, O
    Jacobsen, I
    Reimer, E
    Stern, R
    Zimmermann, J
    Comparison of five eulerian air pollution forecasting systems for the summer of 1999 using the German ozone monitoring data2002In: Journal of Atmospheric Chemistry, ISSN 0167-7764, E-ISSN 1573-0662, Vol. 42, no 1, p. 91-121Article in journal (Refereed)
    Abstract [en]

    Eulerian state-of-the-art air pollution forecasting systems on the European scale are operated routinely by several countries in Europe. DWD and FUB, both Germany, NERI, Denmark, NILU, Norway, and SMHI, Sweden, operate some of these systems. To apply such modeling systems, e.g. for regulatory purposes according to new EU directives, an evaluation and comparison of the model systems is fundamental in order to assess their reliability. One step in this direction is presented in this study: The model forecasts from all five systems have been compared to measurements of ground level ozone in Germany. The outstanding point in this investigation is the availability of a huge amount of data - from forecasts by the different model systems and from observations. This allows for a thorough interpretation of the findings and assures the significance of the observed features. Data from more than 300 measurement stations for a 5-month period (May-September 1999) of the German monitoring networks have been used in this comparison. Different spatial and temporal statistical parameters were applied in the evaluation. Generally, it was found that the most comprehensive models gave the best results. However, the less comprehensive and computational cheaper models also produced good results. The extensive comparison made it possible to point out weak points in the different models and to describe the individual model behavior for a full summer period in a climatological sense. The comparison also gave valuable information for an assessment of individual measurement stations and complete monitoring networks in terms of the representativeness of the observation data.

  • 1235.
    Ridal, Martin
    et al.
    SMHI, Research Department, Meteorology.
    Murtagh, D P
    Merino, F
    Pardo, J R
    Pagani, L
    Microwave temperature and pressure measurements with the Odin satellite: II. Retrieval method2002In: Canadian journal of physics (Print), ISSN 0008-4204, E-ISSN 1208-6045, Vol. 80, no 4, p. 455-467Article in journal (Refereed)
    Abstract [en]

    The millimetre receiver on the Swedish satellite Odin, will be used for detection of the 118.750 GHz oxygen line. The temperature and pressure will be determined from the output of a three-channel filter bank measurement. One frequency bin is centred over the emission-line frequency while the other two cover parts of the line wing, where the opacity is less, providing a useful signal at lower altitudes. The bandwidth of each channel is 40 MHz. The signal in the frequency bin covering the line centre is modeled by a high-resolution model including the Zeeman effect, developed by the Observatoire de Paris-Meudon. The other two 40 MHz bins are modeled using the much faster standard Odin forward model, developed at the Department of Meteorology at Stockholm University together with Chalmers University of Technology. The operational retrievals employ an iterative method that uses simulated signals from a reference atmosphere as a lookup table for the pressure. The temperature is then calculated from the equation of hydrostatic equilibrium, and a new lookup table computed. This process is repeated until a convergence criterion is reached. Simulations, including known error sources, show that the temperature can be retrieved with a root mean square (rms) around 3 K, in the altitude range similar to25-90 km using the operational temperature retrieval method (the filter bank method). A sub-millimetre receiver on board Odin will also be used to observe the oxygen line at 487.249 GHz. Both this line and the 118.750 GHz line can be observed in high resolution (150 kHz) for detailed studies of the Zeeman splitting. Retrievals from the high-resolution measurements are expected to give a precision of +/-2 K rms at that resolution. However, this kind of observation will occupy an entire spectrometer and will not be made on a regular basis.

  • 1236. Grobner, J
    et al.
    Rembges, D
    Bais, A F
    Blumthaler, M
    Cabot, T
    Josefsson, Weine
    SMHI, Research Department, Atmospheric remote sensing.
    Koskela, T
    Thorseth, T M
    Webb, A R
    Wester, U
    Quality assurance of reference standards from nine European solar-ultraviolet monitoring laboratories2002In: Applied Optics, ISSN 1559-128X, E-ISSN 2155-3165, Vol. 41, no 21, p. 4278-4282Article in journal (Refereed)
    Abstract [en]

    A program for quality assurance of reference standards has been initiated among nine solar-UV monitoring laboratories. By means of a traveling lamp package that comprises several 1000-W ANSI code DXW-type quartz-halogen lamps, a 0.1-Omega shunt, and a 6-1/2 digit voltmeter, the irradiance scales used by the nine laboratories were compared with one another; a relative uncertainty of 1.2% was found. The comparison of 15 reference standards yielded differences of as much as 9%; the average difference was less than 3%. (C) 2002 Optical Society of America.

  • 1237.
    Ridal, Martin
    SMHI, Research Department, Meteorology.
    Isotopic ratios of water vapor and methane in the stratosphere: Comparison between ATMOS measurements and a one-dimensional model2002In: JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, ISSN 0747-7309, Vol. 107, no D16, article id 4285Article in journal (Refereed)
    Abstract [en]

    [1] A one-dimensional model simulating the transport and chemistry of methane and water vapor including their isotopic ratios in the tropical stratosphere is compared to measurements by the Atmospheric Trace Molecule Spectroscopy experiment (ATMOS) instrument. The model and measurements show good agreement in the isotopic ratio profiles. The deltaD depletion for water vapor is -600parts per thousand to -500parts per thousand at the tropopause with a small increase up to similar to10 hPa. Above this altitude the modeled isotopic ratio shows a strong increase due to methane oxidation. The measured profiles are rather noisy above 10 hPa but give an indication of a stronger increase in the isotopic ratio than modeled. If the isotopic ratio of water vapor is allowed to vary at the tropopause simulating an annual cycle in the input values, a wave pattern that is transported upwards arises on the vertical profile. This is a similar effect as the "tape recorder'' for water vapor. A wave pattern can also be detected in the tropical deltaD profiles from ATMOS. The methane isotopic ratio shows behavior similar to that of water vapor but without the wave pattern. The increase in methane deltaD above 10 hPa is very strong. The measured profiles are again rather noisy above this altitude, but measurements from inside the polar vortex show that the methane isotopic ratio in the upper stratosphere is very high. The deltaD values are in the range of +300parts per thousand to +500parts per thousand at altitudes as low as 40 hPa (similar to25 km) in the polar vortex.

  • 1238.
    Andersson, Lotta
    et al.
    SMHI, Core Services.
    Arheimer, Berit
    SMHI, Research Department, Hydrology.
    Consequences of changed wetness on riverine nitrogen - human impact on retention vs. natural climatic variability2001In: Regional Environmental Change, ISSN 1436-3798, E-ISSN 1436-378X, Vol. 2, no 3, p. 93-105Article in journal (Refereed)
    Abstract [en]

    The HBV-N model was used for a scenario analysis of changes in nitrogen retention and transport caused by alterations of wetness due to land drainage, lowering of lakes, building of dams and climatic variability in a river basin in south-central Sweden (1885-1994). In general, dams were situated in locations more favourable for retention, compared to the lowered lakes. Rather modest conversions of water bodies only changed nitrogen transport by about 3%. The 180-times-larger increase of (mainly) tile-drained agricultural land had, according to simulations, increased the nitrogen transport by 17%, due to reduced retention. However, compared to human-induced alteration of the landscape N retention, the choice of 10-year periods of climatological data had the overriding effect on the calculated nitrogen transport. Weather-induced variations resulted in a 13% difference in nitrogen retention between various 10-year periods. When the model was driven by climatological data from the driest 10-year period (1905-1914), the estimated average annual load was only half of that obtained with climatological data from the wettest 10-year period (1975-1984).

  • 1239.
    Meier, Markus
    SMHI, Research Department, Oceanography.
    On the parameterization of mixing in three-dimensional Baltic Sea models2001In: Journal of Geophysical Research, ISSN 0148-0227, E-ISSN 2156-2202, Vol. 106, no C12, p. 30997-31016Article in journal (Refereed)
    Abstract [en]

    As mixing plays a dominant role for the physics of an estuary like the Baltic Sea (seasonal heat storage, mixing in channels, deepwater mixing), different mixing parameterizations for use in three-dimensional (3-D) Baltic Sea models are discussed. Within the Swedish regional climate modeling program, SWECLIM, a 3-D coupled ice-ocean model for the Baltic Sea has been coupled with an improved version of the two-equation k-epsilon turbulence model using a corrected dissipation term, flux boundary conditions to include the effect of a turbulence enhanced layer due to breaking surface gravity waves, and a parameterization for breaking internal waves. Results of multiyear simulations are compared with observations. The seasonal thermocline (the main focus of this paper) is simulated satisfactory. During the stagnation period between 1983 and 1993, simulated salinity in the lower layer of the Baltic Sea decreases as observed. Unsolved problems of the k-epsilon model are discussed. To replace the controversial equation for dissipation, the performance of a hierarchy of k models has been tested and compared with the k-epsilon model. In addition, it is shown that the results of the 1-D turbulence submodel depend very much on the dimensionality of the hydrodynamic model. Using the same turbulence parameterization, vertical velocity shear and density gradients are simulated differently in 1-D column models compared to 3-D ocean circulation models. Finally, the impact of two mixing parameterizations on Baltic Sea climate is discussed.

  • 1240. Haapala, J
    et al.
    Meier, Markus
    SMHI, Research Department, Oceanography.
    Rinne, J
    Numerical investigations of future ice conditions in the Baltic Sea2001In: Ambio, ISSN 0044-7447, E-ISSN 1654-7209, Vol. 30, no 4-5, p. 237-244Article in journal (Refereed)
    Abstract [en]

    Global climate change is expected to have an effect on the physical and ecological characteristics of the Baltic Sea. Estimates of future climate on the regional scale can be obtained by using either statistical or dynamical downscaling methods of global AOGCM scenario results. In this paper, we use 2 different coupled ice-ocean models of the Baltic Sea to simulate present and future ice conditions around 100 years from present. Two 10-year time slice experiments have been performed using the results of atmospheric climate model simulations as forcing, one representing pre-industrial climate conditions (control simulation), and the other global warming with a 150% increase in CO2 greenhouse gas concentration (scenario simulation). Present-day climatological ice conditions and interannual variability are realistically reproduced by the models. The simulated range of the maximum annual ice extent in the Baltic in both models together is 180 to 420.10(3) km(2) in the control simulation and 45 to 270.10(3) km(2) in the scenario simulation. The range of the maximum annual ice thickness is from 32 to 96 cm and from 11 to 60 cm in the control and scenario simulations, respectively. In contrast to earlier estimates, sea ice is still formed every winter in the Northern Bothnian Bay and in the most Eastern parts of the Gulf of Finland. Overall, the simulated changes of quantities such as ice extent and ice thickness, as well as their interannual variations are relatively similar in both models, which is remarkable, because the 2 coupled ice-ocean model systems have been. developed independently. This increases the reliability of future projections of ice conditions in the Baltic Sea.

  • 1241.
    Rummukainen, Markku
    et al.
    SMHI, Research Department, Climate research - Rossby Centre.
    Räisänen, Jouni
    SMHI, Research Department, Climate research - Rossby Centre.
    Bringfelt, Björn
    SMHI, Research Department, Climate research - Rossby Centre.
    Ullerstig, Anders
    SMHI, Research Department, Climate research - Rossby Centre.
    Omstedt, Anders
    SMHI, Research Department, Oceanography.
    Willen, Ulrika
    SMHI, Research Department, Climate research - Rossby Centre.
    Hansson, Ulf
    SMHI, Research Department, Climate research - Rossby Centre.
    Jones, Colin
    SMHI, Research Department, Climate research - Rossby Centre.
    A regional climate model for northern Europe: model description and results from the downscaling of two GCM control simulations2001In: Climate Dynamics, ISSN 0930-7575, E-ISSN 1432-0894, Vol. 17, no 5-6, p. 339-359Article in journal (Refereed)
    Abstract [en]

    This work presents a regional climate model, the Rossby Centre regional Atmospheric model(RCA1), recently developed from the High Resolution Limited Area Model (HIRLAM). The changes in the HIRLAM parametrizations, necessary for climate-length integrations, are described. A regional Baltic Sea ocean model and a modeling system for the Nordic inland lake systems have been coupled with RCA1. The coupled system has been used to downscale 10-year time slices from two different general circulation model (GCM) simulations to provide high-resolution regional interpretation of large-scale modeling. A selection of the results from the control runs, i.e. the present-day climate simulations, are presented: large-scale free atmospheric fields, the surface temperature and precipitation results and results for the on-line simulated regional ocean and lake surface climates. The regional model modifies the surface climate description compared to the GCM simulations, but it is also substantially affected by the biases in the GCM simulations. The regional model also improves the representation of the regional ocean and the inland lakes, compared to the GCM results.

  • 1242. Christensen, J H
    et al.
    Räisänen, Jouni
    SMHI, Research Department, Climate research - Rossby Centre.
    Iversen, T
    Bjorge, D
    Christensen, O B
    Rummukainen, Markku
    SMHI, Research Department, Climate research - Rossby Centre.
    A synthesis of regional climate change simulations - A Scandinavian perspective2001In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 28, no 6, p. 1003-1006Article in journal (Refereed)
    Abstract [en]

    Four downscaling experiments of regional climate change for the Nordic countries have been conducted with three different regional climate models (RCMs). A short synthesis of the outcome of the suite of experiments is presented as an ensemble, reflecting the different driving atmosphere-ocean general circulation model (AOGCM) conditions, RCM model resolution and domain size, and choice of emission scenarios. This allows the sources of uncertainties in the projections to be assessed. At the same time analysis of the climate change signal for temperature and precipitation over the period 1990-2050 reveals strong similarities. In particular, all experiments in the suite simulate changes in the precipitation distribution towards a higher frequency of heavy precipitation.

  • 1243. Hellstrom, C
    et al.
    Chen, D L
    Achberger, C
    Räisänen, Jouni
    SMHI, Research Department, Climate research - Rossby Centre.
    Comparison of climate change scenarios for Sweden based on statistical and dynamical downscaling of monthly precipitation2001In: Climate Research (CR), ISSN 0936-577X, E-ISSN 1616-1572, Vol. 19, no 1, p. 45-55Article in journal (Refereed)
    Abstract [en]

    Two dynamically and statistically downscaled precipitation scenarios for Sweden are compared with respect to changes in the mean, The dynamically downscaled scenarios are generated by a 44 km version of the Rossby Centre regional climate model (RCM). The RCM is driven by data from 2 global greenhouse gas simulations sharing a 2.6degreesC global warming, one made by the HadCM2 and the other by the ECHAM4 general circulation model (GCM). The statistical downscaling model driven by the same GCMs is regression-based and incorporates large-scale circulation indices of the 2 geostrophic wind components (u and v), total vorticity (xi) and large-scale humidity at 850 hPa (q850) as predictors. The precipitation climates of the GCMs, RCMs and statistical models from the control runs are compared with respect to their ability to reproduce the observed seasonal cycle. Great improvements in the simulation of the seasonal cycle by all the downscaling models compared to the GCMs significantly increase the credibility of the downscaling models, The precipitation changes produced by the statistical models result from changes in all predictors, but the change in 4 is the greatest contributor in southern Sweden followed by q850 and u, while changes in q850 have greater effects in the northern parts of the country. The temporal and spatial variability of precipitation changes are higher in the statistically downscaled scenarios than in the dynamically downscaled ones. Comparisons of the 4 scenarios show that the spread of the scenarios created by the statistical model is on average larger than that between the RCM scenarios. The relatively large average spread is mainly due to the large differences found in summer. The seasonally averaged difference of the dynamical and statistical scenarios for the ECHAM4-based downscaled scenarios is 12%, and for the HadCM2 downscaled scenarios 21%. The differences in annual precipitation change are smaller, on average 4.5% among the HadCM2-based downscaled scenarios, and 6.9% among the ECHAM4-based downscaling scenarios.

  • 1244.
    Räisänen, Jouni
    SMHI, Research Department, Climate research - Rossby Centre.
    CO2-induced climate change in CMIP2 experiments: Quantification of agreement and role of internal variability2001In: Journal of Climate, ISSN 0894-8755, E-ISSN 1520-0442, Vol. 14, no 9, p. 2088-2104Article in journal (Refereed)
    Abstract [en]

    CO2-induced changes in surface air temperature, precipitation, and sea level pressure are compared between model experiments participating in the second phase of the Coupled Model Intercomparison Project (CMIP2). A statistical formalism is applied, in which the average squared amplitude of the simulated climate changes is divided into a common signal and variances associated with internal variability and model differences. In the 20-yr period centered at the doubling of CO2 and for a set of 14-15 models, the dimensionless global relative agreement on gridbox-scale annual mean climate changes is 0.89 for surface air temperature but only 0.22 for precipitation and 0.46 for sea level pressure. A majority of the interexperiment differences are attributed to model differences; the contribution of internal variability to the differences in change is estimated as 16% for temperature, 34% for precipitation, and 32% for sea level pressure. For seasonal rather than annual climate changes, the agreement is lower and the contribution of internal variability to the interexperiment variance larger. Likewise, the relative agreement is worse and internal variability in relative terms more important earlier during the transient experiments than around the doubling of CO2. Conversely, when climate changes are averaged over larger areas than individual grid boxes, the relative agreement improves with increasing averaging domain (especially with precipitation and temperature) and the impact of internal variability decreases.

  • 1245.
    Räisänen, Jouni
    et al.
    SMHI, Research Department, Climate research - Rossby Centre.
    Joelsson, Rune
    SMHI, Research Department, Climate research - Rossby Centre.
    Changes in average and extreme precipitation in two regional climate model experiments2001In: Tellus. Series A, Dynamic meteorology and oceanography, ISSN 0280-6495, E-ISSN 1600-0870, Vol. 53, no 5, p. 547-566Article in journal (Refereed)
    Abstract [en]

    Two regional climate model experiments for northern and central Europe are studied focussing on greenhouse gas-induced changes in heavy precipitation. The average yearly maximum one-day precipitation P-max shows a general increase in the A hole model domain in both experiments, although the mean precipitation P-mcan decreases in the southern part of the area, especially in one of the experiments. The average yearly maximum six-hour precipitation increases even more than the one-day P-max suggesting a decrease in the timescale of heavy precipitation. The contrast between the P-max, and P-max changes in the southern part of the domain and the lack of such a contrast further north are affected by changes in wet-day frequency that stem, at least in part. from changes in atmospheric circulation. However, the yearly extremes of precipitation exhibit a larger percentage increase than the average wet-day precipitation. The signal-to-noise aspects of the model results are also studied in some detail. The 44 km grid-box-scaie changes in P-max are very heavily affected by inter-annual variability, with an estimated standard error ;of about 20% for the 10-year mean changes. However. the noise in P-max decreases sharply toward larger horizontal scales, and large-area mean changes in P-max can be estimated with similar accuracy to those in P-mcan Although a horizontal averaging of model results smooths out the small-scale details in the true climate change signal as well, this disadvantage is, in the case of P-max changes, much smaller than the advantage of reduced noise.

    Download full text (pdf)
    fulltext
  • 1246.
    Räisänen, Jouni
    et al.
    SMHI, Research Department, Climate research - Rossby Centre.
    Rummukainen, Markku
    SMHI, Research Department, Climate research - Rossby Centre.
    Ullerstig, Anders
    SMHI, Research Department, Climate research - Rossby Centre.
    Downscaling of greenhouse gas induced climate change in two GCMs with the Rossby Centre regional climate model for northern Europe2001In: Tellus. Series A, Dynamic meteorology and oceanography, ISSN 0280-6495, E-ISSN 1600-0870, Vol. 53, no 2, p. 168-191Article in journal (Refereed)
    Abstract [en]

    Two 2 x 10-year climate change experiments made with the Rossby Centre regional Atmospheric climate model(RCA) are reported. These two experiments are driven by boundary data from two global climate change simulations, one made with HadCM2 and the other with ECKAM4/OPYC3, in which the global mean warming is virtually the same, 2.6 degreesC. The changes in mean temperature and precipitation show similarities (including broadly the same increase in temperature and in northern Europe a general increase in annual precipitation) as well as differences between the two RCA experiments. These changes are strongly governed by the driving GCM simulations. Even on the RCA grid box scale, the differences in change between RCA and the driving GCM are generally smaller than the differences between the two GCMs. Typically about a half of the local differences between the two RCA simulations are attributed to noise generated by internal variability, which also seems to explain a substantial part of the RCA-GCM differences particularly for precipitation change. RCA includes interactive model components for the Baltic Sea and inland lakes of northern Europe. The simulated changes in these water bodies are discussed with emphasis on the wintertime ice conditions. Comparison with an earlier RCA experiment indicates that a physically consistent treatment of these water bodies is also of importance for the simulated atmospheric climate change.

    Download full text (pdf)
    fulltext
  • 1247.
    Räisänen, Jouni
    et al.
    SMHI, Research Department, Climate research - Rossby Centre.
    Palmer, T N
    A probability and decision-model analysis of a multimodel ensemble of climate change simulations2001In: Journal of Climate, ISSN 0894-8755, E-ISSN 1520-0442, Vol. 14, no 15, p. 3212-3226Article in journal (Refereed)
    Abstract [en]

    Because of the inherent uncertainties in the computational representation of climate and because of unforced chaotic climate variability, it is argued that climate change projections should be expressed in probabilistic form. In this paper, 17 Coupled Model Intercomparison Project second-phase experiments sharing the same gradual increase in atmospheric CO2 are treated as a probabilistic multimodel ensemble projection of future climate. Tools commonly used for evaluation of probabilistic weather and seasonal forecasts are applied to this climate change ensemble. The probabilities of some temperature- and precipitation-related events defined for 20-yr seasonal means of climate are first studied. A cross-verification exercise is then used to obtain an upper estimate of the quality of these probability forecasts in terms of Brier skill scores, reliability diagrams, and potential economic value. Skill and value estimates are consistently higher for temperature- related events (e.g., will the 20-yr period around the doubling of CO2 be at least 1 degreesC warmer than the present?) than for precipitation-related events (e.g., will the mean precipitation decrease by 10% or more?). For large enough CO2 forcing, however, probabilistic projections of precipitation-related events also exhibit substantial potential economic value for a range of cost-loss ratios. The treatment of climate change information in a probabilistic rather than deterministic manner (e.g., using the ensemble consensus forecast) can greatly enhance its potential value.

  • 1248.
    Gustafsson, Nils
    et al.
    SMHI, Research Department, Meteorology.
    Berre, Loik
    SMHI, Research Department, Atmospheric remote sensing.
    Hörnquist, Sara
    SMHI, Research Department, Atmospheric remote sensing.
    Huang, X Y
    Lindskog, Magnus
    SMHI, Research Department, Meteorology.
    Navascues, B
    Mogensen, K S
    Thorsteinsson, S
    Three-dimensional variational data assimilation for a limited area model Part I: General formulation and the background error constraint2001In: Tellus. Series A, Dynamic meteorology and oceanography, ISSN 0280-6495, E-ISSN 1600-0870, Vol. 53, no 4, p. 425-446Article in journal (Refereed)
    Abstract [en]

    A 3-dimensional variational data assimilation (3D-Var) scheme for the HIgh Resolution Limited Area Model (HIRLAM) forecasting system is described. The HIRLAM 3D-Var is based on the minimization of a cost function that consists of one term J(b). which measures the distance between the resulting analysis and a background field, in general a short-range forecast. and another term J(o). which measures the distance between the analysis and the observations. This paper is concerned with the general formulation of the HIRLAM 3D-Var and with Jb. while the companion paper by Lindskog and co-workers is concerned with the handling of observations, including the J(o) term, and with validation of the 3D-Var through extended parallel assimilation and forecast experiments. The 3D-Var minimization requires a pre-conditioning that is achieved by a transformation of the minimization control variable. This change of variable is designed as an operator approximating an inverse square root of the forecast error covariance matrix in the model space. The main transformations are the Subtraction of the geostrophic wind increment, the bi-Fourier transform, and the projection on vertical eigenvectors. The spectral bi-Fourier approach allows one to derive non-separable structure functions in a limited area model. in the form of vertically dependent horizontal spectra and scale-dependent vertical correlations. Statistics have been accumulated from differences between +24 h and +48 h HIRLAM forecasts valid at the same time. Results from single observation impact studies as well as results from assimilation cycles using operational observations are presented. It is shown that the HIRLAM 3D-Var produces assimilation increments in accordance with the applied analysis structure functions, that the fit of the analysis to the observations is in agreement with the assumed error statistics. and that assimilation increments are well balanced. It is also shown that the particular problems associated with the limited area formulation have been solved. These results, together with the results of the companion paper, indicate that the 3D-Var scheme performs significantly better than the statistical interpolation scheme.

    Download full text (pdf)
    fulltext
  • 1249.
    Lindskog, Magnus
    et al.
    SMHI, Research Department, Meteorology.
    Gustafsson, Nils
    SMHI, Research Department, Meteorology.
    Navascues, B
    Mogensen, K S
    Huang, X Y
    Yang, X
    Andrae, Ulf
    SMHI, Research Department, Meteorology.
    Berre, Loik
    SMHI, Research Department, Atmospheric remote sensing.
    Thorsteinsson, S
    Rantakokko, J
    Three-dimensional variational data assimilation for a limited area model Part II: Observation handling and assimilation experiments2001In: Tellus. Series A, Dynamic meteorology and oceanography, ISSN 0280-6495, E-ISSN 1600-0870, Vol. 53, no 4, p. 447-468Article in journal (Refereed)
    Abstract [en]

    A 3-dimensional variational data assimilation (3D-Var) scheme for the HIgh Resolution Limited Area Model (HIRLAM) forecasting system is described. The HIRLAM 3D-Var is based on the minimisation of a cost function that consists of one term, J(b), which measures the distance between the resulting analysis and a background field, in general a short-range forecast, and another term. J(o), which measures the distance between the analysis and the observations. This paper is concerned with J(o) and the handling of observations, while the companion Paper by Gustafsson et al. (2001) is concerned with the general 3D-Var formulation and with the J(b) term. Individual system components. such as the screening of observations and the observation operators, and other issues, such as the parallelisation strategy for the computer code, are described. The functionality of the observation quality control is investigated and the 3D-Var system is validated through data assimilation and forecast experiments. Results from assimilation and forecast experiments indicate that the 3D-Var assimilation system performs significantly better than two currently used HIRLAM systems. which are based on statistical interpolation. The use of all significant level data from multilevel observation reports is shown to be one factor contributing to the superiority of the 3D-Var system. Other contributing factors are most probably the formulation of the analysis as a single global problem, the use of non-separable structure functions and the variational quality control, which accounts for non-Gaussian observation errors.

    Download full text (pdf)
    fulltext
  • 1250. Carmichael, G R
    et al.
    Hayami, H
    Calori, G
    Uno, I
    Cho, S Y
    Engardt, Magnuz
    SMHI, Research Department, Air quality.
    Kim, S B
    Ichikawa, Y
    Ikeda, Y
    Ueda, H
    Amann, M
    Model intercomparison study of long range transport and sulfur deposition in East Asia (MICS-ASIA)2001In: Water, Air and Soil Pollution, ISSN 0049-6979, E-ISSN 1573-2932, Vol. 130, no 1-4, p. 51-62Article in journal (Refereed)
    Abstract [en]

    To help improve the use of models in science & policy analysis in Asia it is necessary to have a better understanding of model performance and uncertainties. Towards this goal an intercomparison exercise has been initiated as a collaborative study of scientists interested in long-range transport in East Asia. An overview of this study is presented in this paper. The study consists of a set of prescribed test calculations with carefully controlled experiments. Models used the same domain, emission inventory, model parameters, meteorological conditions, etc. Two periods (January and May 1993) were selected to reflect long-range transport conditions under two distinct seasons. During these periods measurements of sulfur concentrations and deposition were made throughout the study region using identical sampling and analysis protocols. The intercomparison activity consists of four tasks (Blind Test, Fixed Parameter Test, Source Receptor test, and Tuning Test). All participants were asked to do Task A, and as many of the other tasks as possible. To date seven different models have participated in this study. Results and key findings are presented.

22232425262728 1201 - 1250 of 1453
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf