Change search
Refine search result
1234567 1 - 50 of 707
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Belusic, Danijel
    et al.
    SMHI, Research Department, Climate research - Rossby Centre.
    Berg, Peter
    SMHI, Research Department, Hydrology.
    Bozhinova, Denica
    SMHI, Research Department, Hydrology.
    Bärring, Lars
    SMHI, Research Department, Climate research - Rossby Centre.
    Doescher, Ralf
    SMHI, Research Department, Climate research - Rossby Centre.
    Eronn, Anna
    SMHI, Research Department, Climate research - Rossby Centre.
    Kjellström, Erik
    SMHI, Research Department, Climate research - Rossby Centre.
    Klehmet, Katharina
    SMHI, Research Department, Hydrology.
    Martins, Helena
    SMHI, Research Department, Climate research - Rossby Centre.
    Nilsson, Carin
    Olsson, Jonas
    SMHI, Research Department, Hydrology.
    Photiadou, Christiana
    SMHI, Research Department, Hydrology.
    Segersson, David
    SMHI, Research Department, Air quality.
    Strandberg, Gustav
    SMHI, Research Department, Climate research - Rossby Centre.
    Climate Extremes for Sweden2019Report (Other academic)
  • 2.
    Stensen, Katarina
    et al.
    SMHI, Core Services.
    Matti, Bettina
    SMHI, Core Services.
    Rasmusson, Kristina
    SMHI, Research Department, Oceanography.
    Hjerdt, Niclas
    SMHI, Core Services.
    Modellstudie för att undersöka åtgärdersom påverkar lågflöden: – Delrapport 2 i regeringsuppdrag om åtgärder för att motverkavattenbrist i ytvattentäkter.2019Report (Other academic)
    Abstract [en]

    In 2018 the Swedish Meteorological and Hydrological Institute, SMHI was assigned toperform a study of measures to prevent water scarcity in surface water resources. Thework is ongoing and has been performed stepwise. This is the second report produced sofar. The report presents the results from a pre-study that was performed to evaluate theeffect of different measures on low flows and their potential to prevent water scarcity insurface water resources. The aim of the model study was to build a knowledge basis fordeveloping a tool that can be used to prevent water scarcity in surface water resources.Through the tool, municipalities and other actors in the water sector will be able tosimulate water availability in a catchment area independently.

    The weather has the largest impact on water availability, but there are different measuresthat can prevent water scarcity in surface water resources. The measures are mostlypreventative but some can be used in scarcity situations as well.

    The most effective measure is to use the water storage capacity in lakes and to regulatethem wisely. Obviously, this requires that there are lakes to regulate. In the southern partsof Sweden water availability is often good in wintertime while water scarcity occursduring summertime and at the beginning of fall. Through lake regulation, water can bestored in periods with significant water availability and used in periods when water isneeded. It is common to regulate lakes for hydropower production, but some lakes areregulated for water supply as well. SMHI regards this as an important aspect to considerin areas that are in risk for water scarcity since many permissions for water regulation aregoing to be reconsidered now.

    Measures on ditch, drainage and other watercourses can have a local effect, but it is notlarge enough to affect the low flows on a larger scale. Restoration of wetlands has as wellmostly a local effect since very large areas are required to impact on surface waterresources on a larger scale.

    In areas with significant water extractions, the low flow is affected if these are changed.Often, knowledge on water extraction still is inadequate and it is difficult to exactlycalculate the effect if water extractions are changed. It is also complicated to restrictwater extractions. Measures such as establishing water ponds for irrigation might havepotential provided they are filled during periods of good water availability. The effect ofextractions will then decrease during low flow periods.

    The ongoing work to prevent water scarcity in surface water resources will focus ondeveloping methods for sustainable water management. It is evident that the work withwater resources planning needs to be performed mutually between sectors in a catchmentarea. The tool that will be developed within this project will contribute to that this workcan be performed in a sustainable way.

  • 3.
    Stensen, Katarina
    et al.
    SMHI, Core Services.
    Krunegård, Aino
    SMHI, Core Services.
    Rasmusson, Kristina
    SMHI, Research Department, Oceanography.
    Matti, Bettina
    SMHI, Core Services.
    Hjerdt, Niclas
    SMHI, Core Services.
    Sveriges vattentillgång utifrån perspektivet vattenbrist och torka: – Delrapport 1 i regeringsuppdrag om åtgärder för att motverka vattenbrist i ytvattentäkter.2019Report (Other academic)
    Abstract [en]

    In this report, the concept of drought in Sweden as well as the causes is discussed. Thereport also discusses the spatial variability of water resources in Sweden.

    Water shortage is when the demand for water surpasses the water available. It is thereforevery much dependent on the water usage.

    Climate change causes higher temperature and a warmer Sweden thus affecting wateravailability. In general both temperature and precipitation are expected to increase inwintertime leading to more water available during winters. However, higher temperaturesduring summers cause a higher evaporation which might lead to less water available insummertime, especially in the southern parts of Sweden. The climate change will increasethe number of extreme rainfall events. The amount of rain during such short-term extremerainfall events is usually much more than the soil´s infiltration capacity thus makingfloodings more common in future. Milder winters change the snow pattern, which inparticular affect rivers in the northern part of the country.

    During the summers 2016–2018, water shortages occurred in some parts of Sweden. Thecauses of water shortages were different for different parts and different years. Howeverit made Sweden to experience some of the impacts of climate change and a warmerclimate. It was an eye opener and showed us the importance of the adaptation to thesenew circumstances.

    Many factors are involved in the water availability. They can however be summarized in3 categories:

    • Climate – temperature and precipitation for example.
    • Storage capacity – how much water an area can store
    • Water usage

    As a country, Sweden has abundant water resources and available fresh water. But watershortage might still occur. Water availability and water usage can vary a lot locally whichmight lead to water shortage in some regions. To cope with water shortages priorities areneeded between different sectors and interests. Many stakeholders need to agree andcompromise on the usage of water.

  • 4.
    Algotsson, Josefina
    et al.
    SMHI, Core Services.
    Edman, Moa
    SMHI, Research Department, Oceanography.
    Förslag till statusklassning av parameter 9.5 Sötvatteninflöde och vattenutbyte i kustvatten och vatten i övergångszon: En jämförelse mellan Kustzonsmodellens naturliga och normala uppsättning2019Report (Other academic)
    Abstract [en]

    Around half of Sweden's electricity generation consists of hydropower, which is produced in about 2000 power plants. The largest drainage of water from land takes place during the spring and the water is stored in reservoirs for electricity production during the winter. This change in the natural runoff has major effects on the aquatic ecosystems and is considered to be one of the biggest environmental challenges for Swedish waterways and lakes.There is currently no guidance for status classification of hydromorphological parameters in coastal waters according to the Water Framework Directive. SMHI was commissioned by the water authorities to produce a proposal for class boundaries and classification for parameter 9.5 Freshwater inflow and water exchange in coastal water and water in transition zone in accordance with the regulations stated by the Swedish Agency for Marine and Water Management in the document HVMFS 2013:19. The hydrological model S-HYPE and the oceanographic Coastal Zone Model were used to study the changes in fresh water supply as well as fresh water content, salinity and water age of the surface water caused by regulation of water flow on land.In general, the regulation of water flow on land has led to an increase in the fresh water content by 2% along the Norrlands coast and a corresponding decrease in the fresh water content on the west coast. Typically, the regulation of water on land leads to a lower freshwater supply to the coast during spring and summer and a higher freshwater supply to the coast in the autumn and winter compared to a scenario with a natural land runoff.The natural background variation, as defined by ± 2 MAD (Median Absolute Deviation), and the Maximum Absolute Deviation, MAA, were used to construct 5 status classes.

  • 5.
    Wesslander, Karin
    et al.
    SMHI, Core Services.
    Viktorsson, Lena
    SMHI, Core Services.
    Skjevik, Ann-Turi
    SMHI, Core Services.
    The Swedish National Marine Monitoring Programme 2018. Hydrography Nutrients Phytoplankton2019Report (Other academic)
    Abstract [en]

    This report presents the main results of the Swedish national marine monitoring programme of thepelagic during 2018. The monitoring data of hydrography, nutrients and phytoplankton are analysedfor the seas surrounding Sweden: the Skagerrak, the Kattegat, the Sound, the Baltic Proper, theBothnian Sea and the Bothnian Bay.The national environmental monitoring of the pelagic is carried out by SMHI (SwedishMeteorological and Hydrological Institute), Stockholm University and UMF (Umeå Marine SciencesCentre). Data is collected, analysed and reported with support from Swedish environmentalmonitoring and on behalf of by SwAM (Swedish Agency for Marine and Water Management). TheSMHI monitoring is made in cooperation between the national environmental monitoring of thepelagic and the SMHI oceanographic sampling programme for the seas surrounding Sweden and is cofinancedby SwAM and SMHI. This annual summary of the national monitoring is made by SMHI andis financed by the contract between SwAM and SMHI.The weather in 2018 was characterized by high air temperatures and a few storms that impliedconsequences for the state in the sea. The spring arrived quickly and the sea surface temperatureincreased rapidly from April to May. In August and September two storms, named Johanne and Knud,passed the region and the surface layer was well-mixed at several stations. At the East coast upwellingevents were noted in both the Baltic Proper and the Bothnian Sea.During the year there were two small deep water inflows to the Baltic Proper that temporarilyimproved the oxygen condition in the southern parts. No improvements of the oxygen condition wereseen in the Eastern and Western Gotland Basins, instead the amount of hydrogen sulphide increased inthese basins during the year.The spring bloom had arrived in the Skagerrak and the Kattegat in March and concentrations ofdissolved inorganic phosphorus (DIP) and dissolved inorganic nitrogen (DIN) were close to or at thedetection limit from April to September. In the Skagerrak and the Kattegat the spring bloom wasdominated by the diatom Skeletonema marinoi. In the Baltic Proper the spring bloom was observed amonth later, in April. The extensive cyanobacteria bloom in the Baltic Proper started already in Mayand during the late September cruise cyanobacteria were still abundant. The dinoflagellateProrocentrum compressum was found in high cell numbers during the autumn at all stations on theWest coast. This flagellate has rarely been observed previously and although it is not harmful it isinteresting when species suddenly occur and stay for a longer period. The potentially harmful diatomgenus Pseudo-nitzschia bloomed in the beginning of December.Surface concentrations of DIP and DIN were mainly normal except from in the Skagerrak and theKattegat where concentrations were lower than usual in December. Concentrations of silicate wereabove normal levels before the spring bloom at most of the stations and in the Baltic Proper silicatewas also high in the autumn.In 2018 there were some difficulties with available research vessels for the planned cruises and somecruises needed to be cancelled with short notice. Many planned observations were therefore missed, inparticular during the summer period.

  • 6.
    Losjö, Katarina
    et al.
    SMHI, Professional Services.
    Södling, Johan
    SMHI, Professional Services.
    Wern, Lennart
    SMHI, Core Services.
    German, Jonas
    SMHI, Professional Services.
    Uppföljning av de svenska riktlinjerna för bestämning av dimensionerande flöden för dammanläggningar2019Report (Other academic)
    Abstract [en]

    Commissioned by Svenska kraftnät, the Swedish Meteorological and Hydrological Institute has carried out a follow-up study on the Swedish guidelines for determination of designs floods for dams. The main purpose was to investigate whether the Swedish meteorological and hydrological observation data show any signs of climatic change, which could affect the validity of the guidelines, formulated in 1990 (Flödeskommittén, 1990), later updated twice, in which the edition of 2015 (Svensk Energi et.al., 2015), emphasize the application also in a changing climate . The first follow-up study was performed in 2008 (Bergström m.fl., 2008), and the present study has used longer time series, both after 2008 and earlier than in the study of 2008.

    The guidelines prescribe that the calculation of design flood should be carried out using a hydrological model, and the following parameters are decided to be used in the simulations:

    • a snow cover with a statistical return period of 30 years
    • a 14-day precipitation sequence over 1000 km2
    • corrections of this sequence regarding the area of the catchment
    • corrections of the sequence regarding elevation above sea level and month of the year
    • extreme wind speed

    The present analyses have used long series of observation data from SMHI climatological and hydrological databases, mostly using the division of Sweden into five regions, described in the guidelines.

    • The analyses of the 14-day precipitation sequence has been made by analysing precipitation higher than 90 mm over 1000 km2 during 24 hours and 2 days during the period 1930-2018, as well as the 14-day precipitation sum 1961-2018. Also the highest point precipitation values have been analysed for the period 1945-2018.
    • It is not possible to find a trend in the data for neither of these analyses, in contrary to the findings in the previous follow-up, where an increase in the highest point precipitation was seen for the period 1961-2007.
    • Two adaptations of accumulated 14-day precipitation over three areas: 100, 100 and 10 000 km, to the areal correction curve in the guidelines show some discrepancies. However, the present analyses are made using another database than the basis of the original curve, and the results indicate that there is no immediate need for adjustment of the areal correction in the guidelines.
    • The distribution of high precipitation over the year has been studied, and it shows the same pattern as the monthly corrections of the sequence in the guidelines. The pattern is similar for the periods 1961-90 and 1991-2018.
    • The mean values of yearly largest snow cover have been analysed for the period 1904/05-2017/18. The results do not indicate any trend, only shorter time variations, neither for the whole period nor for the period 1961-2018. As the determination of snow cover with a return period of 30 years should be made using frequency analysis, the recommendations in the guidelines to use a long data period for the analyses are still valid.
    • An analysis of the daily highest flood peaks was made for data from 60 unregulated or very slightly regulated discharge stations. No long time trend that could reveal changes in flood risks can be seen in the results.
    • The geostrophic wind, an idealized average wind speed, computed from observations of air pressure, has been studied 1940-2017. For geostrophic wind of at least 25 m/s no signs of long term trend can be seen.
    • The analyses of the ratio between the design flood for flood design category I and the flood of a 100-year return period indicates increasing ratio with decreasing catchment area. This could

    The overall conclusion of the study is that there is presently no need for adjusting the parameters in the guidelines. The importance of using long time series for trend analyses is revealed.

  • 7.
    Algotsson, Josefina
    et al.
    SMHI, Core Services.
    Van Der Stelt, Frank
    SMHI, Professional Services.
    Abdoush, Diala
    SMHI, Core Services.
    Swedish coastal water bodies on Wikidata Combining WFD data with Wikidata2019Report (Other academic)
    Abstract [en]

    In accordance with the Water Framework Directive, the water district authorities report environmental information on Sweden’s surface water bodies to the EU.Under the government commission Smartare miljöinformation to the Swedish Environmental Protection Agency, Naturvårdsverket, the initiative was taken to adopt the reported environmental information on Sweden’s coastal water bodies to Wikidata and Wikipedia. SMHI has led the initiative with support from Wikimedia Sweden, the South Baltic Sea Water District Authority, the county administrative board of Jönköping and Wikimedia volunteers.The aim of this project has been to make the environmental information about Sweden’s coastal water bodies more accessible to the public, to disseminate knowledge about status classification and create conditions for increasing environmental awareness among the public. The project has resulted in:• 653 new coastal water bodies are described on Wikidata.• Wikipedia articles on water management in Sweden, coastal water bodies and the SVAR database have been created.• A template for infoboxes on Wikipedia has been developed and can automatically retrieve and display the status classification of coastal water bodies.• The template for infoboxes on coastal water bodies is used in articles on coastal waters on Wikipedia.• The license for the SVAR database is set to CC0, which facilitates the use of the information and opens the possibility of using it in more ways than before.

  • 8.
    Langner, Joakim
    et al.
    SMHI, Research Department, Air quality.
    Alpfjord Wylde, Helene
    SMHI, Professional Services.
    Andersson, Camilla
    SMHI, Research Department, Air quality.
    Mapping of phytotoxic ozone dose for birch, spruce, wheat and potato using the MATCH-Sweden system2019Report (Other academic)
    Abstract [en]

    We have added calculations of PODY for birch, spruce, wheat and potato to theMATCH-Sweden system. Several important updates compared to the previousimplementation for generic crops and generic deciduous trees have been made includingimproved calculations of canopy level ozone concentrations, updated calculations ofquasi-laminar and surface resistance and inclusion of soil moisture dependence forspecific vegetation species. 

    A comparison to results from the EMEP model for generic crops and generic deciduoustrees shows a better agreement than previously. Considering also that an error in theEMEP calculations has been identified, affecting primarily the PODY calculations forgeneric deciduous trees, MATCH-Sweden and EMEP model results now appear to bemore consistent.Year to year variability of PODY for birch and spruce are similar to that for genericdeciduous trees while numerical values are different, especially for birch, due to differentparameters in the PODY calculation and longer vegetation periods. Critical levelscorresponding to a 4 % growth reduction are exceeded for both birch and spruce in majorparts of Sweden for all years in the period 2013-2017.Year to year variability of PODY for wheat and potato are larger than for generic cropsdue to the higher threshold for PODY used in the calculations. Critical levelscorresponding to a 5 % reduction in crop yield are reached in four of five years insouthern Sweden for wheat and for two in five years for potato.The updated program package for PODY calculations could be used to calculateconsistent time series of PODY for different types of vegetation for the period 1990-2013based on reanalyzed ozone concentrations. The program package could also be developedto calculate PODY for the whole of Europe for different emission- or climate scenarios.The results presented in this report are also available in digital form at the SMHI homepage for environmental monitoring of air quality(www.smhi.se/klimatdata/miljo/atmosfarskemi).

  • 9.
    Sjökvist, Elin
    et al.
    SMHI, Professional Services.
    Abdoush, Diala
    SMHI, Core Services.
    Sommaren 2018 - en glimt av framtiden?2019Report (Other academic)
    Abstract [en]

    The weather in the summer of 2018 was extreme compared to what Sweden experienced during the 20th century. In some places, heat records were broken, and the combination of exceptional warm conditions with a deficit in precipitation caused a severe drought followed by forest fires and crop failure. Knowledge about impacts from climate change leads to the question: Will conditions like those in the summer of 2018 be average at the end of this century? This report compares different statistical measures from the summer of 2018 with by SMHI previously published climate scenarios.

  • 10.
    Josefsson, Weine
    SMHI, Core Services.
    Long-term global radiation in Stockholm, 1922-20182019Report (Other academic)
    Abstract [en]

    In 1922 monitoring of global irradiation started in Stockholm, Sweden. Over the years SMHI has been measuring this meteorological quantity with various instruments and at different sites within Stockholm. This type of changes of instruments and sites cause minor, but important systematic changes in the measured global irradiation. Therefore, it is not recommended to directly compare the results from different periods.The report presents methods how this can be done and there is a final data set with long-term global radiation data for Stockholm. Daily and monthly final data are presented on a web-page at www.smhi.seAs a bi-product the sunshine duration was also digitized, controlled and corrected. These data can be found in Appendix 3.

  • 11.
    FN:s klimatpanel – Sammanfattning för beslutsfattare Global uppvärmning på 1,5ºC2019Report (Other academic)
    Abstract [sv]

    Denna rapport har tagits fram på förfrågan till IPCC ”… att till år 2018 ta fram en specialrapport om konsekvenserna av 1,5°C uppvärmning jämfört med förindustriella nivåer och relaterade globala utsläppsbanor av växthusgaser”. Detta framgår av 21:a partskonferensen av FN:s ramkonvention om klimatförändringar beslut om antagande av Parisavtalet.

    IPCC beslutade i april 2016 att ta fram denna specialrapport om effekter av global uppvärmning på 1,5°C över förindustriella nivåer och relaterade utsläppsbanor av växthusgaser, i syfte att stärka den globala förmågan att svara upp mot hotet från klimatförändringen, målsättningar inom hållbar utveckling och ansträngningar för att utrota fattigdom.

    I denna Sammanfattning för beslutsfattare (“Summary for Policy Makers”, SPM) presenteras specialrapportens viktigaste slutsatser baserat på utvärderingen av tillgänglig vetenskaplig, teknisk och socioekonomisk litteratur med relevans för en global uppvärmning på 1,5°C och för att kunna jämföra mellan en global uppvärmning på 1,5°C och 2°C över förindustriell nivå. Konfidensnivån för varje central slutsats anges med IPCC:s standardiserade terminologi. Den vetenskapliga grunden för varje slutsats anges genom referenser till avsnitt i respektive kapitel. I sammanfattningen identifieras ävenkunskapsluckor, med hänvisning till relevanta underliggande kapitel.

  • 12.
    FN:s klimatpanel – Sammanfattning för beslutsfattare Global uppvärmning på 1,5ºC2019Report (Refereed)
    Abstract [en]

    This Report responds to the invitation for IPCC ‘... to provide a Special Report in 2018 on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways’ contained in the Decision of the 21st Conference of Parties of the United Nations Framework Convention on Climate Change to adopt the Paris Agreement. The IPCC accepted the invitation in April 2016, deciding to prepare this Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. This Summary for Policymakers (SPM) presents the key findings of the Special Report, based on the assessment of the available scientific, technical and socio-economic literature relevant to global warming of 1.5°C and for the comparison between global warming of 1.5°C and 2°C above pre-industrial levels. The level of confidence associated with each key finding is reported using the IPCC calibrated language. The underlying scientific basis of each key finding is indicated by references provided to chapter elements. In the SPM, knowledge gaps are identified associated with the underlying chapters of the Report.

  • 13.
    Andersson, Stefan
    et al.
    SMHI, Professional Services.
    Arvelius, Johan
    SMHI, Professional Services.
    Jones, Jörgen
    SMHI, Professional Services.
    Kindell, Sven
    SMHI, Professional Services.
    Leung, Wing
    SMHI, Professional Services.
    Beräkningar av emissioner och halter avbenso(a)pyren och partiklar frånsmåskalig vedeldning: Luftkvalitetsmodellering för Skellefteå, Strömsunds och Alingsås kommuner2019Report (Other academic)
    Abstract [sv]

    I denna studie har emissioner och halter i utomhusluften av benso(a)pyren (B(a)P) samt partiklar (PM2.5) beräknats för Skellefteå, Strömsunds och Alingsås kommuner avseende småskalig uppvärmning. Emissioner har beräknats för hela kommunerna, medan luftkvalitet har modellerats för två tätorter i varje kommun; Boliden och Bureå i Skellefteå kommun, Backe och Hoting i Strömsunds kommun samt Alingsås och Sollebrunn i Alingsås kommun. De tre kommunerna valdes då de identifierades ha höga B(a)P-halter i den tidigare nationella B(a)P-kartläggningen samt tillgång till sotarregister av tillräcklig bra kvalitet; tätorterna valdes genom att analysera emissionsberäkningarna i varje kommun och välja ut tätorter med de högsta emissionerna.

    Syftet med studien är undersöka hur B(a)P- och PM2.5-halterna i Sverige förhåller sig till miljökvalitetsnormer, utvärderingströsklar samt preciseringen av miljökvalitetsmålet Frisk luft och analysera hur stort gapet är för att klara dessa. Detta genom spridningsmodellering samt utvärdering mot mätningar i fem av tätorterna. Osäkerheterna i den tidigare gjorda nationella karteringen av B(a)Phalter från småskalig vedeldning (Andersson et al., 2015), som ska ses som en preliminär bedömning av halterna, utvärderas också. Vidare undersöks, genom känslighetsanalys, hur antaganden om emissionsfaktorer och eldvanor påverkar luftkvaliteten i områdena. En av de åtgärder som utreds är att byta ut gamla vedpannor mot moderna eldstäder. Luftmiljövinsterna av detta undersöks också genomspridningsmodellering.

    Emissionerna från eldstäderna har beräknats utifrån information från sotarregister i de olika kommunerna, där eldstäderna har klassificerats som vedpannor (miljögodkända och ickemiljögodkända), lokaleldstäder, flis- och pelletspannor samt övriga pannor (mest oljepannor). Geolokalisering, dvs. framtagandet av koordinater, har gjorts för de olika eldstäderna i registren baserat på adresser. Med hjälp av modellerade energibehov för ett genomsnittligt meteorologiskt kalenderår för perioden 1960-1990, för ett genomsnittligt småhus, samt antaganden om emissionsfaktorer, eldstäders nyttjandegrad samt verkningsgrad har sedan emissionerna beräknats.

    Lokalskalig spridningsmodellering med en rumslig upplösning om 20 m × 20 m har genomförts för de utvalda tätorterna med den Gaussiska lokalskaliga spridningsmodellen Dispersion, som är samma lokala modell som finns i modellsystemet SIMAIR-ved. Vid spridningsmodelleringen har meteorologiska data från Mesan för kalenderår 2016 och 2017 använts. Bakgrundshalter har inkluderats för PM2.5, men enbart lokalt haltbidrag från småskalig uppvärmning har beräknats för B(a)P; ett schablontillägg av bakgrundshalter för B(a)P har gjorts för varje tätort. Modelleringen har också utvärderats mot preliminära mätresultat (månadsprovtagning) av B(a)P avseende juni- december 2017 i Boliden, Bureå, Backe, Hoting samt Alingsås tätort samt mätningar av PM2.5 i Bureå och Backe (mätningarna har utförts av Svenska Miljöinstitutet IVL på uppdrag av Naturvårdsverket)

  • 14. Fagerli, Hilde
    et al.
    Tsyro, Svetlana
    Jonson, Jan Eiof
    Nyíri, Ágnes
    Gauss, Michael
    Simpson, David
    Wind, Peter
    Benedictow, Anna
    Valdebenito, Alvaro
    Klein, Heiko
    Schulz, Michael
    Mortier, Augustin
    Aas, Wenche
    Hjellbrekke, Anne-Gunn
    Solberg, Sverre
    Platt, Stephen Matthew
    Yttri, Karl Espen
    Rud, Richard Olav
    Tørseth, Kjetil
    Mareckova, Katarina
    Matthews, Bradley
    Tista, Melanie
    Wankmüller, Robert
    Posch, Maximilian
    Bergström, Robert
    SMHI, Research Department, Air quality.
    Lazzeri, Paolo
    Pandolf, Marco
    Luoma, Krista
    Aurela, Minna
    Lenartz, Fabian
    Bergmans, Benjamin
    Pittavino, Sara
    Tombolato, Ivan
    Transboundary particulate matter, photo-oxidants, acidifying and eutrophying components2018Report (Other academic)
  • 15.
    Hansson, Martin
    et al.
    SMHI, Core Services.
    Viktorsson, Lena
    SMHI, Core Services.
    Andersson, Lars
    SMHI, Core Services.
    Oxygen Survey in the Baltic Sea 2018 - Extent of Anoxia and Hypoxia, 1960-20182018Report (Other academic)
    Abstract [en]

    A climatological atlas of the oxygen situation in the deep water of the Baltic Sea was first published in 2011 in SMHI Report Oceanography No 42. Since 2011, annual updates have been made as additional data have been reported to the ICES data center. In this report the results for 2017 has been updated and the preliminary results for 2018 are presented. Oxygen data from 2018 have been collected from various sources such as international trawl survey, national monitoring programmes and research projects with contributions from Poland, Estonia, Latvia, Russia, Denmark, Sweden and Finland. For the autumn period each profile in the dataset was examined for the occurrence of hypoxia (oxygen deficiency) and anoxia (total absence of oxygen). The depths of onset of hypoxia and anoxia were then interpolated between sampling stations producing two surfaces representing the depth at which hypoxic and anoxic conditions respectively are found. The volume and area of hypoxia and anoxia have been calculated and the results have then been transferred to maps and diagrams to visualize the annual autumn oxygen situation during the analysed period. The updated results for 2017 and the preliminary results for 2018 show that the severe oxygen conditions in the Baltic Proper after the regime shift in 1999 continue. Both the areal extent and the volume with anoxic conditions have, after 1999, been constantly elevated to levels only observed occasionally before the regime shift. Despite the frequent inflows to the Baltic Sea during the period 2014-2016 approximately 22% of the bottom area was affected by anoxia and 32% by hypoxia during 2018. The preliminary results indicate that this is the largest area affected by anoxia during the analysed period, starting 1960. The hydrogen sulphide that had disappeared from the Eastern and Northern Gotland Basin due to the inflows in 2014-2016 is now steadily increasing in the deep water again.

  • 16.
    Persson, Gunn
    et al.
    SMHI, Professional Services.
    Wikberger, Christina
    Amorim, Jorge Humberto
    SMHI, Research Department, Air quality.
    Klimatanpassa nordiska städer med grön infrastruktur2018Report (Other academic)
    Abstract [sv]

    Förtätning av städer och pågående klimatförändring ökar behovet av anpassningsåtgärder. Grön infrastruktur och naturbaserade lösningar kan bidra till att skapa mer hälsosamma och långsiktigt hållbara städer. För att öka användningen av grön infrastruktur som en del i klimatanpassningen behöver vi förstå vilka kunskapsluckor och andra hinder som ligger i vägen för att grön infrastruktur ska användas i klimatanpassningsarbetet.

    SMHI har under år 2018 tillsammans med Stockholms stad drivit det av forskningsrådet Formas finansierade projektet ”Grön infrastruktur och klimat i nordiska städer: idag och i framtiden”. Sammanställningen av rapporter och workshops i projektet visar att det finns mycket kunskap och tillgängliga exempel på hur urbana gröna lösningar kan se ut. Det saknas dock svar på de kvantitativa effekterna av olika åtgärder avseende till exempel temperatur, luftkvalitet, påverkan på hälsa och sociala aspekter.

    De åtgärder som i dag görs i nordiska städer baseras huvudsakligen på behovet av att lösa dagvattenfrågor. Det finns få exempel på städer som använder grön infrastruktur och naturbaserade lösningar som klimatanpassningsåtgärder när det gäller värme. Samtidigt är aktörerna medvetna om övriga positiva effekter som tillkommer såsom trivsel, svalka och biologisk mångfald.

    Eftersom grön infrastruktur och naturbaserade lösningar är ganska nya åtgärder i klimatanpassningsarbetet så saknas oftast erfarenheter av långtidseffekter. Skötsel kan vara ett problem, trots bra anvisningar. Aktörerna pekar också på behovet av att engagera de boende kontinuerligt. Det tycks handla om att skapa en djupare förståelse för varför anläggningar ser ut som de gör och hur de ska skötas.

    Vid workshops och webbinarium efterfrågades vilka kunskapsluckor deltagarna såg. Ekonomi och kunskap om effekter lyftes fram tydligt i svaren. Dessutom önskades metoder för anläggning och drift, goda exempel, planeringsverktyg och underlag om temperatur och vatten.

    Ekonomi och kunskapsbrist ansågs som hinder för genomförande, vilket framkom vid workshops och webbinarium. Andra hinder som nämndes var politiska beslut, lagstiftning, avsaknad av riktlinjer, förtätning och konkurrens om mark liksom planerings- och samordningssvårigheter. En tröghet i att ändra traditionellt planerande och utförande pekades också ut som hinder. Många efterfrågar kunskap allmänt. Vår förhoppning är att denna rapport kan bidra till att inspirera och informera om var material finns. 

  • 17.
    Karlson, Bengt
    et al.
    SMHI, Research Department, Oceanography.
    Mohlin, Malin
    Hu, Ye O.O.
    Andersson, Anders F.
    Miljöövervakning av växtplankton i Kattegatt och Östersjön med rDNA-barcoding och mikroskopi: En jämförelse av molekylärbiologisk metodik och mikroskopi.2018Report (Other academic)
  • 18.
    Andersson, Camilla
    et al.
    SMHI, Research Department, Air quality.
    Alpfjord Wylde, Helene
    SMHI, Professional Services.
    Engardt, Magnuz
    SMHI, Research Department, Air quality.
    Long-term sulfur and nitrogen deposition in Sweden: 1983-2013 reanalysis2018Report (Other academic)
    Abstract [en]

    A unique long-term (1983-2013) dataset of sulfur and nitrogen deposition has been compiled for Sweden as well as the Baltic Sea and surrounding countries, based on quality controlled measurements and modelled fields, fused though advanced methods capturing spatial and temporal variations. The data set can be used for describing trends in deposition to various relevant surface types.Our reanalysis compares well to observations, but we have identified differences in dry deposition to coniferous forest. This calls for more in-depth studies of the dry deposition and improvements to the respective methods.We recommend more advanced methods of describing spatial variation than averaging or spatial interpolation of observed deposition.We estimate a significant decrease from the 1980s until today for both sulfur and nitrogen deposition (by ca. 80% and 30% respectively).Critical loads for coniferous and deciduous forests, mountain vegetation and wetlands have been surpassed mainly in the southwest Sweden, but also in southeast Sweden and the southern parts of Scandes Mountains. The situation is improving, but exceedances do still occur also in larger regions.

  • 19.
    Leung, Wing
    et al.
    SMHI, Professional Services.
    Windmark, Fredrik
    SMHI, Professional Services.
    Brodl, Ludvik
    SMHI, Professional Services.
    Langner, Joakim
    SMHI, Research Department, Air quality.
    A basis to estimate marginal cost for air traffic in Sweden.: Modelling of ozone, primary and secondary particles and deposition of sulfur and nitrogen.2018Report (Other academic)
    Abstract [en]

    In this study we have investigated the effects of emissions from aviation on air quality in both Swedish and European domains. The results will be used as a basis to estimate the marginal cost for air traffic in Sweden. The vertical, geographical and temporal distribution of aviation emissions over Sweden has been estimated using a newly developed methodology. The aviation emissions have been categorized by their emission altitude (LTO, low cruise and high cruise) and flight nationality (international, national and overflight). This aviation emission information was then used as input data to the regional atmospheric chemistry model MATCH to simulate the effects of aviation emissions on ecosystem, health and climate metrics. A total of 17 model simulations over three years have been performed. There is one simulation in which all emitted species from the surface and aviation emissions are included and eight simulations in which all aviation emissions from each combination of emission altitude and flight nationality are included. There are eight simulations in which NOx aviation emissions from each combination of emission altitude and flight nationality are included. Using these simulations, contributions from aviation emissions to deposition, concentrations and a range of different air pollution metrics has been calculated. The results are calculated in both the Europe and Swedish domains for all the simulations. 

    The following results are included in this report: . Deposition of oxidised and reduced nitrogen . Deposition of excess sulfur . AOT40 and SOMO35 and their exposures . Concentration and exposure of primary and secondary particles . Concentration of nitrate and sulfate particles . Concentration of surface and above surface ozone 

    In summary, contributions from aviation emissions in Sweden to the different concentrations, deposition and metrics for environmental effects are generally small, on the order of a few per mille or less. However the impacts can be traced in the simulations well beyond the Swedish borders. LTO emissions give the largest contribution to deposition of oxidised and reduced nitrogen, deposition of excess sulfur and concentrations of primary and secondary particles. In particular near the major airports like Stockholm-Arlanda and Gothenburg-Landvetter. High cruise emissions give insignificant contributions to deposition and concentrations at surface level. LTO emissions give a negative contribution to surface ozone concentration locally at the main Swedish airports but give an overall increased contribution in the regions around. Aviation emissions at low cruise and high cruise levels have the largest effect on ozone concentrations at higher levels. 

  • 20. Colette, Augustin
    et al.
    Schucht, Simone
    Ciarelli, Giancarlo
    Létinois, Laurent
    Meleux, Frédérik
    Andersson, Camilla
    SMHI, Research Department, Air quality.
    Cuvelier, C.
    Manders, A.
    Mar, K.A.
    Mircea, M.
    Pay, T.
    Raffort, V.
    Tsyro, S.
    Adani, M.
    Bergström, Robert
    SMHI, Research Department, Air quality.
    Bessagnet, G
    Briganti, A.
    Cappelletti, A.
    Couvidat, F.
    D'Isidoro, M.
    Fagerli, H.
    Ojha, N.
    Otero, N.
    Wind, P.
    Long-term air quality trends in Europe Fine Particulate Matter (PM2.5) Health Impacts.2018Report (Other academic)
  • 21.
    Wesslander, Karin
    et al.
    SMHI, Core Services.
    Viktorsson, Lena
    SMHI, Core Services.
    Skjevik, Ann-Turi
    SMHI, Core Services.
    The SwedishNational MarineMonitoringProgramme 2017: HydrographyNutrientsPhytoplankton2018Report (Other academic)
    Abstract [en]

    This report presents the main results of the Swedish national marine monitoring programme of the pelagic during 2017. The monitoring data of hydrography, nutrients and phytoplankton are analysed for the seas surrounding Sweden: Skagerrak, Kattegat, The Sound, Baltic Proper, Bothnian Sea and Bothnian Bay. The monitoring is carried out by SMHI (Swedish Meteorological and Hydrological Institute), SU (Stockholm University) and UMF (Umeå Marine Sciences Centre) and the monitoring programme is co-funded by SwAM (Swedish Agency for Marine and Water Management), SMHI, SU and UMF. Data is collected, analysed and reported with support from Swedish environmental monitoring and commissioned by SwaM.

    The Baltic current along the Swedish west coast implies large variations in surface salinity and the unusually large outflow of brackish water from the Baltic Sea in 2017 was reflected as low surface salinity in Skagerrak and Kattegat in the beginning of the year. There were no major deep water inflows to the Baltic Sea during 2017 but a few inflows of minor magnitude. These minor inflows only temporarily improved the oxygen condition in the Bornholm Basin and in the southern part of the Eastern Gotland Basin.

    The salinity below the halocline was above normal in the Gotland Basins and in the Northern Baltic Proper, and also in the surface layer in the Eastern Gotland Basin for almost the whole year.

    In Skagerrak and Kattegat, surface concentrations of phosphate and dissolved inorganic nitrogen were normal while dissolved silica concentrations were elevated especially in spring. In the Baltic Sea, the concentration of silicate in the surface water was elevated in all basins. According to the estimated total content of silicate there has been an increase in silica content in the Baltic Sea since the early 1990’s. Surface concentrations of phosphate were above normal in the Gotland basins and the Northern Baltic Proper while inorganic nitrogen content was above normal in parts of the Arkona and Bornholm basins. During spring and summer, the inorganic nitrogen was consumed at greater depths than usual in the Baltic Proper. In particular concentrations of phosphate and dissolved silica were generally lower than normal in the bottom layer.

    Instead of diatoms, the flagellate genus Pseudochattonella, which is potentially toxic to fish, bloomed in the Kattegat and Skagerrak areas in February – April. During autumn there was a prolonged diatom bloom though. In the Baltic Sea spring bloom occurred in April. The cyanobacteria bloom began in May already with Aphanizomenon flos-aquae. During June and July all three of the filamentous cyanobacteria, A. flos-aquae, Dolichospermum lemmermannii and the potentially harmful Nodularia spumigena were found in the phytoplankton samples in various amounts.

    In the Bothnian Sea, the sea surface temperature during summer was lower than normal and the oxygen conditions in the bottom layer was not critical but still below normal levels.

  • 22.
    Hansson, Martin
    et al.
    SMHI, Core Services.
    Viktorsson, Lena
    SMHI, Core Services.
    Andersson, Lars
    SMHI, Core Services.
    Oxygen Survey in the Baltic Sea 2017 - Extent of Anoxia and Hypoxia, 1960-20172018Report (Other academic)
    Abstract [en]

    A climatological atlas of the oxygen situation in the deep water of the Baltic Sea was firstpublished in 2011 in SMHI Report Oceanography No 42. Since 2011, annual updates have beenmade as additional data have been reported to ICES. In this report the results for 2016 havebeen updated and the preliminary results for 2017 are presented. Oxygen data from 2017 havebeen collected during the annual Baltic International Acoustic Survey (BIAS) and from nationalmonitoring programmes with contributions from Sweden, Finland and Poland.For the autumn period each profile in the dataset was examined for the occurrence of hypoxia(oxygen deficiency) and anoxia (total absence of oxygen). The depths of onset of hypoxia andanoxia were then interpolated between sampling stations producing two surfaces representingthe depth at which hypoxic and anoxic conditions respectively are found. The volume and areaof hypoxia and anoxia have been calculated and the results have then been transformed to mapsand diagrams to visualize the annual autumn oxygen situation during the analysed period.The updated results for 2016 and the preliminary results for 2017 show that the severe oxygenconditions in the Baltic Proper after the regime shift in 1999 continue. Both the areal extent andthe volume with anoxic conditions have, after 1999, been constantly elevated to levels onlyobserved occasionally before the regime shift. Despite the frequent inflows to the Baltic Seaduring the period 2014-2016 approximately 18% of the bottom area was affected by anoxia and28% by hypoxia during 2017. The hydrogen sulphide has, due to the inflows, disappeared fromthe Eastern and Northern Gotland Basin. However, the oxygen concentrations in the deep waterare still near zero and signs of increasing hydrogen sulphide close to the bottom have beenobserved during 2017.Sammanfattning

  • 23.
    Lindström, Göran
    et al.
    SMHI, Research Department, Hydrology.
    Bartosova, Alena
    SMHI, Research Department, Hydrology.
    Hjerdt, Niclas
    SMHI, Core Services.
    Strömqvist, Johan
    SMHI, Research Department, Hydrology.
    Uppehållstider i ytvatten i relation tillvattenkvalitetNET, ett generellt uppskalningsverktyg2018Report (Other academic)
    Abstract [sv]

    NET är ett verktyg för uppskattning av vattenburen transport av olika ämnen i punkter där detsaknas mätningar. Verktyget togs ursprungligen fram inom forskningsprogrammet ”Climatechange and the Environmental Objectives” (CLEO, Munthe et al., 2014 och 2016). Tanken äratt NET ska vara generellt, och kunna användas för simulering av olika ämnen, men endastberäkna medelvärden över tiden av mängder och koncentrationer. Ofta är det mängder som ärslutmålet för en beräkning, varför det i vissa situationer kan finnas mycket att vinna på attanvända en enkel och snabb beräkningsmodell. Inom CLEO simulerades flöden av totalkväve,total-fosfor och totalt organiskt kol.

  • 24.
    Olsson, Jonas
    et al.
    SMHI, Research Department, Hydrology.
    Berg, Peter
    SMHI, Research Department, Hydrology.
    Eronn, Anna
    SMHI, Research Department, Climate research - Rossby Centre.
    Simonsson, Lennart
    SMHI, Research Department, Hydrology.
    Södling, Johan
    SMHI, Professional Services.
    Wern, Lennart
    SMHI, Core Services.
    Yang, Wei
    SMHI, Research Department, Hydrology.
    Extremregn i nuvarande och framtida klimat Analyser av observationer och framtidsscenarier2018Report (Other academic)
    Abstract [sv]

    Studien har främst omfattat analyser av extrem korttidsnederbörd i observationer från SMHIs nät av automatiska meteorologiska stationer. Även analyser av korttidsnederbörd från kommunala mätare, manuella meteorologiska stationer, väderradar och klimatmodeller har genomförts. De huvudsakliga slutsatserna från detta uppdrag kan sammanfattas enligt följande.

    • En regionalisering av extrem korttidsnederbörd (skyfall) i Sverige gav fyra regioner: sydvästra (SV), sydöstra (SÖ), mellersta (M) och norra (N) Sverige. Ytterligare indelning kan göras men i denna studie prioriterades att ha regioner av denna storleksordning för att få ett ordentligt underlag för regional statistik. Regionaliseringen gäller enbart korttidsnederbörd, upp till maximalt 12 tim varaktighet.
    • Den regionala statistiken uppvisar tämligen distinkta geografiska skillnader, med högst värden i region SV och lägst i region N. Det är inte förvånande att vårt avlånga land uppvisar regionala skillnader då varmare och fuktigare luftmassor förekommer mer i söder än i norr, och därmed ökar förutsättningarna för intensiv nederbörd. Den regionala statistiken överensstämmer överlag väl med motsvarande statistik i våra grannländer.
    • Under perioden 1996-2017 finns inga tydliga tidsmässiga tendenser vad gäller skyfallens storlek och frekvens i de olika regionerna, utan dessa ligger överlag på en konstant nivå. Inte heller extrem dygnsnederbörd sedan 1900 uppvisar några tydliga tendenser på regional nivå. På nationell nivå indikeras en svag ökning av dels landets högsta årliga nederbörd sedan 1881, dels förekomsten av stora, utbredda 2-dygnsregn sedan 1961.
    • Skyfallsstatistik baserad på nederbördsobservationer från väderradar som justerats mot interpolerade stationsdata (HIPRAD) överensstämmer väl med stationsbaserad statistik för korta varaktigheter (upp till 2 tim) i södra Sverige. För längre varaktigheter och i mellersta och norra Sverige överskattar HIPRAD regnvolymerna.
    • Analyser av de senaste klimatmodellerna (Euro-CORDEX) indikerar en underskattning av extrema regnvolymer för korta varaktigheter (1 tim) men överlag en realistisk beskrivning av observerad skyfallsstatistik. Den framtida ökningen av volymerna beräknas ligga mellan 10% och 40% beroende på tidshorisont och koncentration av växthusgaser, vilket överlag ligger nära tidigare bedömningar.

    Både för bedömningen av regionala skillnader och historiska klimateffekter är det av största vikt att bibehålla, eller ännu hellre utöka, observationerna av korttidsnederbörd i Sverige. Nederbördsmätning via alternativa tekniker bör kunna användas i allt högre utsträckning framöver för förbättrad kunskap och statistik. Väderradar är redan etablerat och den digitala utvecklingen öppnar även möjligheter till insamling av nederbördsdata och relaterad information via mobilmaster, uppkopplade privata väderstationer, sociala medier, etc. Denna utveckling måste bevakas, utvärderas och i största möjliga utsträckning utnyttjas.

  • 25.
    Eklund, Anna
    et al.
    SMHI, Core Services.
    Stensen, Katarina
    SMHI, Core Services.
    Alavi, Ghasem
    SMHI, Professional Services.
    Jacobsson, Karin
    SMHI, Professional Services.
    Sveriges stora sjöar idag och i framtiden. Klimatets påverkan på Vänern, Vättern, Mälaren och Hjälmaren. Kunskapssammanställning februari 2018.2018Report (Other academic)
    Abstract [sv]

    I denna rapport beskrivs den klimatrelaterade problematiken kring landets fyra största sjöar i ett tidsperspektiv fram till 2100. Vänern, Vättern, Mälaren och Hjälmaren är mycket olika till sin karaktär, men vissa gemensamma problem finns. Av sjöarna är det Vänern som har de största problemen i dagens klimat och fram till slutet av detta sekel, medan Mälaren troligtvis är den sjö som kommer få störst problem i ett längre tidsperspektiv.

    Klimatförändringarna medför bland annat förändrade vattennivåer, förändrade vattenflöden, ökande vattentemperatur, minskad istäckning och havsnivåhöjning vilket ger konsekvenser för olika intressen runt sjöarna.

    En gemensam svårighet för klimatanpassning kring de stora sjöarna är att det inte är tydligt vem som ska ta ansvar och kostnader för klimatanpassningsåtgärder. Detta är ett hinder för att komma vidare med de problem som idag finns för Vänern och för den långsiktiga klimatanpassningen av Mälaren, bortom detta sekel.

    Gemensamt för sjöarna är också att det finns behov av ytterligare underlag kring:

    • Samhällsekonomiska konsekvenser av klimatförändringarna för sjöarna
    • Analyser av hur ekosystemen i de enskilda sjöarna påverkas av varmare vatten och kortare perioder med is.
    • Modellering av hur råvattenkvaliteten förändras i framtiden.
    • Mer observationer för att fånga upp klimateffekter i sjöarna.

    Till varje sjö har en referensgrupp bestående av representanter för olika intressen kring sjöarna bildats. Mycket av det som beskrivs i rapporten är underlag som tagits fram inom ramen för projektet och frågeställningar som kommit upp under möten med referensgrupperna, men även befintlig litteratur har använts.

  • 26.
    Södling, Johan
    et al.
    SMHI, Professional Services.
    Nerheim, Signild
    SMHI, Professional Services.
    Statistisk metodik för beräkning av extrema havsvattenstånd2018Report (Other academic)
    Abstract [sv]

    Som ett led i arbetet att förbättra metoderna för planeringsunderlag gällande extrema havsvattenstånd har SMHI gjort en inventering av statistiska metoder för extremvärdesanalys. Metoderna är vanligt förekommande när olika dimensioneringsunderlag tas fram. För att ta fram statistik med hög tillförlitlighet för händelser som har låg sannolikhet (hög återkomsttid) har dock metoderna begränsad användning.

    Tre huvudsakliga metoder har applicerats på SMHI:s havsvattenståndsdata. Den mest vanliga, Blockmaximum-metoden, används vanligtvis på årshögsta vattenstånd. POT – metoden (Peak Over Threshold), använder fler data och är inte lika vanlig. I Norge används en variant av POT – metoden, den så kallade ACER-metoden (Average Conditional Exceedance Rate). Den är mycket lämplig för att ta fram värden för lägre återkomsttider, och är förhållandevis robust när data läggs till vartefter.

    Metodernas lämplighet och känslighet utvärderades för extrema havsvattenstånd, alltså havsvattenstånd med höga återkomsttider(låg sannolikhet). Slutsatsen är att det inte går att välja en metod som överlägsen den andra, och att kunskap om den aktuella platsens oceanografiska förhållanden behövs för att utvärdera resultatens rimlighet. I alla analyser av extrema havsvattenstånd är det viktigt att beakta datakvalité och dataseriens längd. Resultat bör redovisas med konfidensintervall.

    Blockmaximum-metoden testades med olika fördelningar. Gumbel-fördelning visar sig kunna ge orimliga nivåer för vattenståndsextremer och rekommenderas därför inte. GEV (Generalized Extreme Value) och Log-normal fördelning används med fördel i kombination.POT-metoder tar till vara fler händelser än de riktigt extrema, men resultaten som ges har väldigt stora konfidensintervall som växer för låg sannolikhet. Om tröskeln sätts för låg är det inte extremvattenstånd som utvärderas.

    Som en följd av denna analys bestämdes att andra metoder behöver tas fram för att studera de högsta havsvattenstånden längs Sveriges kust. I Schöld m.fl. (2017) redovisas hur man kan gå till väga för att ta fram högsta beräknade havsvattenstånd utifrån befintliga data.

  • 27.
    Karttjänst för framtida medelvattenstånd längs Sveriges kust2018Report (Other academic)
    Abstract [sv]

    Havsnivån stiger och orsaken är den globala uppvärmningen. Effekterna av uppvärmningen på havets nivå kommer främst från den termiska expansionen samt bidrag från smältande glaciärer och de stora landisarna på Grönland och Antarktis.

    Hur snabbt den globala havsnivån stiger beror på hur stora utsläppen av växthusgaser blir. Globala medelvattenstånd fram till år 2100 har framtagits inom IPCC och beskrivs utifrån klimatscenarier, som innebär olika antaganden om den framtida utvecklingen. Oavsett klimatscenario stiger havsnivån och den kommer att fortsätta stiga även efter år 2100. Störst osäkerhet råder, angående framtida havsnivåer, kring avsmältningen av de stora ismassorna på Grönland och Antarktis.

    Medelvattenståndet är den nivå som avgör var strandlinjen normalt ligger och som höga och låga vattenstånd varierar kring. Medelvattenståndet längs Sveriges kuster kommer att förändras olika mycket, främst beroende på den pågående landhöjningen. Andra regionala processer som kan påverka medelvattenståndet är dåligt kända men bedöms i nuläget vara små.

    Globala medelvattenstånd, framtagna inom IPCC AR5, i kombination med landhöjningsinformation från Lantmäteriet har använts för att göra beräkningar av framtida medelvattenstånd längs svenska kusten. Beräkningarna sträcker sig till år 2100. Medelvattenstånd vid observationsplatser längs kusten för referensperioden 1986-2005 används som utgångsvärde.

    Resultaten har publicerats i en karttjänst som visar medelvattenståndet enligt tre olika utsläppsscenarier kring år 2050 respektive år 2100. Karttjänsten ger indikationer för vilka områden som kan vara sårbara för stigande havsnivåer.

  • 28.
    Nerheim, Signild
    et al.
    SMHI, Professional Services.
    Schöld, Sofie
    SMHI, Core Services.
    Persson, Gunn
    SMHI, Professional Services.
    Sjöström, Åsa
    SMHI, Core Services.
    Framtida havsnivåer i Sverige2018Report (Other academic)
    Abstract [sv]

    Sveriges kustområden drabbas ibland av tillfälliga översvämningar i samband med stormar eller då kraftiga lågtryck passerar. Översvämningar kan orsaka allvarliga samhällsstörningar och vatteninträngning i byggnader kan ge upphov till stora kostnader. Den pågående globala uppvärmningen, med stigande havsnivåer som följd, aktualiserar frågan om hur vattenståndet kring svenska kusten kan förändras, idag och i framtiden. Havet stiger och det kommer att pågå under hundratals eller kanske till och med tusentals år framöver.

    SMHI startade 2015 ett projekt för att beskriva havsnivåer längs svenska kusten i dagens och framtidens klimat. Projektet har levererat:

    • Beräknade medelvattenstånd för hela Sveriges kust för år 2050 och år 2100 utifrån tre olika framtida klimatscenarier.
    • En visningstjänst för framtida medelvattenstånd.
    • En beskrivning av hur höga havsvattenstånd kan beräknas för en specifik plats.
    • Höga vattenstånd för SMHI:s mätstationer samt en visualisering av dessa.
    • En översikt över statistisk metodik.
    • En vägledning för utvärdering av lokala effekter.
    • En beskrivning av kända högvattenhändelser i olika kustområden och parametrar och processer relaterade till dessa.

    Denna rapport presenterar en översikt över resultaten som tagits fram i projektet och avslutas med en beskrivning av hur framtidens höga havsnivåer kan bedömas i planeringssyfte. SMHI har i rapporten inte tagit ställning till vilket klimatscenario eller vilken tidshorisont som är mest lämpligt att använda för samhällsplanering. Detta måste bestämmas i ett situationsspecifikt sammanhang där risk och kostnader beaktas. SMHI vill betona att även om år 2100 ofta anges som slutår för klimatscenarier, så kommer havets nivå att fortsätta att stiga längre än så.

    Rapporten summerar resultat från övriga rapporter som framtagits inom projektet. För ytterligare detaljer hänvisas till dessa (se Förord).

  • 29.
    Schöld, Sofie
    et al.
    SMHI, Core Services.
    Hellström, Sverker
    SMHI, Core Services.
    Ivarsson, Cajsa-Lisa
    SMHI, Professional Services.
    Kållberg, Per
    SMHI, Research Department, Meteorology.
    Lindow, Helma
    SMHI, Core Services.
    Nerheim, Signild
    SMHI, Professional Services.
    Schimanke, Semjon
    SMHI, Research Department, Oceanography.
    Södling, Johan
    SMHI, Professional Services.
    Wern, Lennart
    SMHI, Core Services.
    Vattenståndsdynamik längs Sveriges kust2018Report (Other academic)
    Abstract [sv]

    För att skapa ett samhälle väl anpassat till dagens och framtidens havsnivåer behövs besluts- och planeringsunderlag. Skyddsåtgärder och designnivåer för kustskydd är högaktuella frågor och många aktörer är intresserade av information kring potentiella maxnivåer för vattenstånd på olika tidshorisonter. SMHI har därför analyserat de mätdataserier för havsvattenstånd som idag finns tillgängliga från stationer längs Sveriges kust. Det primära syftet var att ta fram en metod för att beräkna det högsta möjliga havsvattenståndet vid mätstationer längs Sveriges kust. Metoden beskrivs i Schöld m.fl.(2017).

    I föreliggande rapport beskrivs allmänt havsnivåer, mätdata, modeller och de resultat som erhölls från olika analyser av mätdata. Mätstationerna indelades i åtta olika kustområden inom vilka vattenståndet samvarierar. Det väder och de specifika stormbanor, som under de senaste 40 åren orsakat de högsta stormfloderna på olika platser längs den svenska kusten kartlades, och vattenståndsdynamiken vid olika mätstationer studerades.

    Kortvariga höjningar av vattenståndet undersöktes, både med avseende på kraftiga vattenståndshöjningar orsakade av passerande väderssystem och med avseende på förhöjda utgångslägen, som i sin tur kan bidra till att stormfloder blir extra höga.

    Det högsta beräknade havsvattenstånd som presenteras är de högsta möjliga stormfloder som skulle kunna inträffa baserat på empiriska analyser av mätdata vid de olika stationerna. Kända extrema händelser, som ägt rum före det att vattenståndet började registreras, ingår inte eftersom de inte har kunnat kvantifieras. Framtida förändringar av medelvattenståndet orsakade av den globala klimatförändringen behandlas inte i denna rapport.

    Resultaten från studien visar att vattennivåerna i Östersjön generellt blir som högst i Bottenviken och i de södra delarna. De höga vattenstånden i större delen av Östersjön är inte lika höga som på västkusten och i Öresund. I Östersjön förefaller också utgångsläget, havsnivån före stormen, utgöra en större del av den resulterande vattenståndshöjningen. Vid flera stationer i de centrala delarna av Östersjön är havsnivån före storm i stort sett hälften av det högsta beräknade havsvattenståndet. Längs västkusten är istället de nettohöjningar som orsakas av rena stormeffekter den viktigaste stormflodskomponenten. Lokala förhållanden, till exempel om stationen är belägen vid en öppen, rak kust eller inne i en vik, påverkar hur högt vattenståndet kan förväntas bli på en viss plats.

    Analyserna visar att stormfloder skulle kunna bli omkring 20-40 cm högre än hittills observerade maximala nivåer i olika kustområden. En osäkerhetsmarginal på runt +15 cm är lämplig att addera, särskilt i de områden där tidvatten förekommer.

  • 30.
    Johansson, Lasse
    et al.
    SMHI, Professional Services.
    Gyllenram, Walter
    SMHI, Professional Services.
    Nerheim, Signild
    SMHI, Professional Services.
    Lokala effekter på extrema havsvattenstånd2018Report (Other academic)
    Abstract [sv]

    När havsvattennivån ska beräknas för en viss plats behöver hänsyn tas till lokala förhållanden. Vattenståndet lokalt kan avvika från det som observeras vid en av SMHI:s eller andras mätplatser. Geografin på platsen och vågor kan leda till högre vattennivåer än de som observeras vid mätplatserna.

    Denna rapport ger en kort beskrivning av hur vattenståndet längs Sveriges kuster byggs upp. Vi ger exempel på olika mekanismer för att läsaren ska få en uppfattning om skalorna i tid och höjd. Vågfenomen lokalt kan leda till att ytterligare högre nivåer kan beröras av vatten än vad vattenståndet anger.

    En översiktlig beskrivning görs av hur vågor interagerar med stränder ochkajer. Begreppen våguppstuvning och våguppsköljning förklaras. Några exempel ges på vilken effekt bottens lutning har och hur vågor utvecklas i hamnar.

    För att beräkna återkomstvärden för vattenstånd på en lokal plats beskrivs hur man kan utgå från de mätningar som SMHI gör sedan många år. Observationer från den närmaste eller de närmaste mätplatserna kan användas för att beräkna vattenstånd med olika återkomsttider för den önskade platsen. Ett exempel på en sådan beräkning presenteras där speciellt viktiga detaljer redovisas.

  • 31.
    Viktorsson, Lena
    et al.
    SMHI, Core Services.
    Wesslander, Karin
    SMHI, Core Services.
    Revidering av fysikaliska och kemiskabedömningsgrunder i kustvatten: Underlag inför uppdatering av HVMFS 2013:192018Report (Other academic)
    Abstract [sv]

    Detta är ett underlag för revidering av bilaga 5 i HVMFS 2013:19, Bedömningsgrunder för fysikaliskkemiskakvalitetsfaktorer i kustvatten och vatten i övergångszonen. Underlaget innefattar främst enuppdatering av referensvärden för näringsämnen samt förslag på uppdatering av viss text i föreskriftengällande syrebalans och siktdjup. Den generella metoden för var och en av stödparametrarna ibedömningsgrunderna bibehålls. I rapportens sista kapitel presenteras de uppdateringar av föreskriftenHVMFS 2013:19 som rekommenderas utifrån detta uppdrag.Efter en jämförelse av tidigare framtagna referensvärden för näringsämnen och de som tagits fram iden här rapporten rekommenderas att nya referensvärden i tillrinnande sötvatten används men atttidigare referensvärden för TN och TP vid utsjösalthalt samt att klassgränser behålls. En mindrejustering av referensvärden för DIN och DIP utifrån havsmiljöförordningens G/M värden föreslåsdock. De nya referensvärdena är framtagna med modellen S-HYPE (Lindström m.fl. 2010) förtillrinnande sötvatten och utifrån utsjövärden för oorganiskt fosfor och kväve (HVMFS 2012:18) samteffektsamband i mätdata. Det förtydligas också att ett konstant referensvärde för näringsämnenanvänds vid salthalter ≤2 psu.Den S-HYPE körning som använts för referensvärden i tillrinnande sötvatten är en bakgrundskörningsom är anpassad till definitionen av bakgrundsbelastning i PLC6 (Pollution Load Compilation 6,HELCOM).Utöver uppdatering av referensvärden för näringsämnen så föreslås en förändrad sammanvägning avkväve och fosfor i bedömningsgrunden. Det innebär att de ingående parametrarna för kväve och fosforsammanvägs var för sig. Bedömningsgrunderna ger då en separat status för varje näringsämne (kväveoch fosfor) baserat på de ingående parametrarna. Detta ger både en större möjlighet till att se vilketnäringsämne som bidrar till att eventuellt sänka status och stämmer överens med hur rapporteringentill EU-kommissionen ska ske.För syre rekommenderas en uppdatering om vilka mätmetoder som får användas, så att ävenmätningar med sensorer kan användas för statusbedömning. För siktdjup var ambitionen att ta fram etthumusgränsvärde för när kvalitetsfaktorn inte ska tillämpas. En fullständig statistisk analys har intehunnits med och en tydlig rekommendation kan inte ges.Det har under arbetet med att ta fram nya referensvärden för näringsämnen enligt nuvarande metodblivit tydligt att metoden för att bedöma näringsämnen behöver en mer övergripande uppdatering. Tillexempel kan metoden för salthaltskorrektion troligen förbättras med hjälp av en analys av mätdata ikombination med kustzonsmodellen.

  • 32.
    Schöld, Sofie
    et al.
    SMHI, Core Services.
    Ivarsson, Cajsa-Lisa
    SMHI, Professional Services.
    Nerheim, Signild
    SMHI, Professional Services.
    Södling, Johan
    SMHI, Professional Services.
    Beräkning av högsta vattenstånd längs Sveriges kust2018Report (Other academic)
    Abstract [sv]

    I rapporten redovisas hur en metod framtagits för att kunna skatta de allra högsta havsvattenstånd som kan uppträda vid de mätstationer för havsvattenstånd som finns längs Sveriges kust. Metoden är generell och principerna kan därför tillämpas på mätdataserier från olika platser. För att kunna tillämpa metoden måste dock mätdataserien ha en viss minimilängd och tidsupplösning. Resultaten som tas fram är empiriska, vilket betyder att de baseras på tillgängliga mätdata.

    I analysen delades data upp i två delar; det genomsnittliga vattenståndet före en högvattenhändelse och nettohöjningen under en högvattenhändelse. Dessa delar benämns havsnivå före storm respektive nettohöjning, i enlighet med:

    stormflod = havsnivå före storm + nettohöjning

    Nivån på stormfloden är det högsta uppmätta havsvattenståndet under respektive högvattenhändelse. I analysen har även högvattenhändelser som inte förknippas med stormar inkluderats. Många av de högsta stormfloderna har inträffat när havsnivån före storm är förhöjd jämfört med medelvattenståndet, framförallt i stora delar av Östersjön. I analysen ingår samtliga högvattenhändelser från vilka det finns tillgänglig mätdata, även sådana som startat från ett lågt utgångsläge.

    I analysen indelades mätstationerna i olika kustområden och samvariationen mellan mätstationerna undersöktes. För varje enskild station, där havsvattenstånd observeras, har högsta havsnivå före storm och högsta nettohöjning framtagits. Den högsta havsnivån före storm som uppmätts inom kustområdet bedömdes gälla för alla mätstationer inom området. Det högsta beräknade havsvattenståndet definierades som kustområdets högsta havsnivå före storm plus mätstationens högsta nettohöjning.

    Tidvatteneffekten har inte beaktats särskilt, utan är i viss mån inkluderad i nettohöjningen. Denna förenkling beskrivs närmare i Schöld m fl. (2017).

    Analysen visade att:

    • samvariationen inom kustområden är mycket hög för vanligt förekommande vattenstånd.
    • högvattenhändelser förekommer oftare i vissa kustområden.
    • de högsta vattenstånden kan variera mycket, även mellan stationer inom samma kustområde.
    • havsnivån före storm är en mer betydande stormflodskomponent i Östersjön och mindre betydande i Skagerrak-Kattegatt.
    • havsnivån före storm behöver identifieras så att den inte är påverkad av själva stormhändelsen.
    • det är lämpligt att uppdatera det högsta beräknade havsvattenståndet regelbundet,särskilt efter att nya rekordhöga stormfloder inträffat.

    Vi valde att definiera havsnivån före storm som ett medelvärde över sju dygn, 48 timmar före stormflodens maximum. Metodiken avser nivåer ovanpå ett gällande medelvattenstånd. Framtida förändringar av medelvattenståndet orsakade av den globala klimatförändringen behandlas inte i denna rapport. Tillämpningen av metoden i ett framtida klimat beskrivs i Nerheim m fl. (2017).

  • 33.
    Stensen, Katarina
    et al.
    SMHI, Core Services.
    Tengdelius Brunell, Johanna
    SMHI, Professional Services.
    Sjökvist, Elin
    SMHI, Professional Services.
    Andersson, Elinor
    SMHI, Core Services.
    Eklund, Anna
    SMHI, Core Services.
    Vattentemperaturer och is i Mälaren Beräkningar för dagens och framtidens klimatförhållanden2018Report (Other academic)
  • 34.
    Eklund, Anna
    et al.
    SMHI, Core Services.
    Stensen, Katarina
    SMHI, Core Services.
    Alavi, Ghasem
    SMHI, Professional Services.
    Jacobsson, Karin
    SMHI, Professional Services.
    Sveriges stora sjöar idag och i framtiden.: Klimatets påverkan på Vänern, Vättern, Mälaren och Hjälmaren. Kunskapssammanställning februari 2018.2018Report (Other academic)
    Abstract [sv]

    I denna rapport beskrivs den klimatrelaterade problematiken kring landets fyra störstasjöar i ett tidsperspektiv fram till 2100. Vänern, Vättern, Mälaren och Hjälmaren ärmycket olika till sin karaktär, men vissa gemensamma problem finns. Av sjöarna är detVänern som har de största problemen i dagens klimat och fram till slutet av detta sekel,medan Mälaren troligtvis är den sjö som kommer få störst problem i ett längretidsperspektiv.Klimatförändringarna medför bland annat förändrade vattennivåer, förändradevattenflöden, ökande vattentemperatur, minskad istäckning och havsnivåhöjning vilketger konsekvenser för olika intressen runt sjöarna.En gemensam svårighet för klimatanpassning kring de stora sjöarna är att det inte ärtydligt vem som ska ta ansvar och kostnader för klimatanpassningsåtgärder. Detta är etthinder för att komma vidare med de problem som idag finns för Vänern och för denlångsiktiga klimatanpassningen av Mälaren, bortom detta sekel.Gemensamt för sjöarna är också att det finns behov av ytterligare underlag kring: Samhällsekonomiska konsekvenser av klimatförändringarna för sjöarna Analyser av hur ekosystemen i de enskilda sjöarna påverkas av varmare vattenoch kortare perioder med is. Modellering av hur råvattenkvaliteten förändras i framtiden. Mer observationer för att fånga upp klimateffekter i sjöarna.Till varje sjö har en referensgrupp bestående av representanter för olika intressen kringsjöarna bildats. Mycket av det som beskrivs i rapporten är underlag som tagits fram inomramen för projektet och frågeställningar som kommit upp under möten medreferensgrupperna, men även befintlig litteratur har använts.

  • 35. Fagerli, Hilde
    et al.
    Tsyro, Svetlana
    Rolstad Denby, Bruce
    Nyíri, Ágnes
    Gauss,, Michael
    Simpson, David
    Wind,, Peter
    Benedictow, Anna
    Jonson, Jan Eiof
    Klein, Heiko
    Schulz, Michael
    Griesfeller, Jan
    Aas, Wenche
    Hjellbrekke, Anne-Gunn
    Solberg, Sverre
    Matthew Platt, Stephen
    Fiebig, Markus
    Yttri, Karl Espen
    Rud, Richard Olav
    Tørseth, Kjetil
    Mareckova, Katarina
    Pinterits, Marion
    Tista, Melanie
    Ullrich, Bernhard
    Wankmüller, Robert
    Posch, Maximilian
    Bergström, Robert
    SMHI, Research Department, Air quality.
    Imhof, Hannah
    Cruz Minguillón, Maria
    Putaud, Jean-Philippe
    Cavalli, Fabrizia
    Poulain, Laurent
    Schlag, Patrick
    Heikkinen, Liine M.
    Swietlicki, Erik
    Martinsson, Johan
    Vana, Milan
    Holubova Smejkalova, Adeala
    Kouvarakis,, Giorgos
    Mihalopoulos, Nikos
    Transboundary particulate matter, photo-oxidants, acidifying and eutrophying components: EMEP Status Report 1 2017; August 23, 20172017Report (Other academic)
    Abstract [en]

    This report presents the EMEP activities in 2016 and 2017 in relation to transboundary fluxes of particulate matter, photo-oxidants, acidifying and eutrophying components, with focus on results for 2015. It presents major results of the activities related to emission inventories, observations and modelling. The report also introduces specific relevant research activities addressing EMEP key challenges, as well as technical developments of the observation and modelling capacities. An important topic this year is the transition to the new EMEP grid and resolution. For the first time, officially reported fine scale emissions (0.1◦×0.1◦ resolution) have been used in the EMEP MSC-W model runs for air pollution assessment. The impacts of this change on model results and its comparisons to observations are analyzed in this report.

  • 36.
    Eilola, Kari
    et al.
    SMHI, Research Department, Oceanography.
    Lindqvist, Stina
    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
    Almroth-Rosell, Elin
    SMHI, Research Department, Oceanography.
    Edman, Moa
    SMHI, Research Department, Oceanography.
    Wåhlstrom, Irene
    SMHI, Research Department, Oceanography.
    Bartoli, Marco
    Klaipeda University, Lithuania.
    Burska, Dorota
    Institute of Oceanography, University of Gdansk, Poland.
    Carstensen, Jacob
    Aarhus University, Denmark.
    Hellemann, Dana
    Department of Environmental Sciences, University of Helsinki, Helsinki, Finland.
    Hietanen, Susanna
    Department of Environmental Sciences, University of Helsinki, Helsinki, Finland.
    Hulth, Stefan
    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
    Janas, Urszula
    Institute of Oceanography, University of Gdansk, Poland.
    Kendzierska, Halina
    Institute of Oceanography, University of Gdansk, Poland.
    Pryputniewicz-Flis, Dorota
    Institute of Oceanography, University of Gdansk, Poland.
    Voss, Maren
    Leibniz Institute for Baltic Sea Research Warnemünde, Germany.
    Zilius, Mindaugas
    Klaipeda University, Lithuania.
    Linking process rates with modellingdata and ecosystem characteristics2017Report (Refereed)
    Abstract [en]

    This report is related to the BONUS project “Nutrient Cocktails in COAstal zones of the Baltic Sea” alias COCOA. The aim of BONUS COCOA is to investigate physical, biogeochemical and biological processes in a combined and coordinated fashion to improve the understanding of the interaction of these processes on the removal of nutrients along the land-sea interface. The report is especially related to BONUS COCOA WP 6 in which the main objective is extrapolation of results from the BONUS COCOA learning sites to coastal sites around the Baltic Sea in general. Specific objectives of this deliverable (D6.4) were to connect observed process rates with modelling data and ecosystem characteristics.

    In the report we made statistical analyses of observations from BONUS COCOA study sites together with results from the Swedish Coastal zone Model (SCM). Eight structural variables (water depth, temperature, salinity, bottom water concentrations of oxygen, ammonium, nitrate and phosphate, as well as nitrogen content in sediment) were found common to both the experimentally determined and the model data sets. The observed process rate evaluated in this report was denitrification. In addition regressions were tested between observed denitrification rates and several structural variables (latitude, longitude, depth, light, temperature, salinity, grain class, porosity, loss of ignition, sediment organic carbon, total nitrogen content in the sediment,  sediment carbon/nitrogen-ratio, sediment chlorphyll-a as well as bottom water concentrations of oxygen, ammonium, nitrate, and dissolved inorganic  phosphorus and silicate) for pooled data from all learning sites.

    The statistical results showed that experimentally determined multivariate data set from the shallow, illuminated stations was mainly found to be similar to the multivariate data set produced by the SCM model. Generally, no strong correlations of simple relations between observed denitrification and available structural variables were found for data collected from all the learning sites. We found some non-significant correlation between denitrification rates and bottom water dissolved inorganic phosphorous and dissolved silica but the reason behind the correlations is not clear.

    We also developed and evaluated a theory to relate process rates to monitoring data and nutrient retention. The theoretical analysis included nutrient retention due to denitrification as well as burial of phosphorus and nitrogen. The theory of nutrient retention showed good correlations with model results. It was found that area-specific nitrogen and phosphorus retention capacity in a sub-basin depend much on mean water depth, water residence time, basin area and the mean nutrient concentrations in the active sediment layer and in the water column.

  • 37.
    Wesslander, Karin
    SMHI, Core Services.
    Coastal eutrophication status assessment using HEAT 1.0 (WFD methodology) versus HEAT 3.0 (MSFD methodology) and  Development of an oxygen consumption  indicator2017Report (Other academic)
    Abstract [en]

    This report contains two parts which are self standing reports and a contribution to the HELCOM project EUTRO-OPER. The work has been funded and commissioned by SwAM (Swedish agency for marine and water management) 2014-2015.

    • Coastal eutrophication status assessment using HEAT 1.0 (WFD methodology) versus HEAT 3.0 (MSFD methodology)

    Eutrophication status is assessed nationally in coastal waters within the Water Framework Directive (WFD) and in open sea areas within the Marine Strategy Framework Directive (MSFD). Both WFD and MSFD consider eutrophication but with different approaches and it is therefore a need for harmonisation in the assessment process.   The Excel based tool HEAT (HELCOM Eutrophication Assessment Tool) has been used in previous assessments in the HELCOM region. There are two versions of the tool; HEAT 1.0 and HEAT 3.0, the first is based on the WFD methodology and the second is based on the MSFD methodology. The main difference between HEAT 1.0 and HEAT 3.0 is how the indicators are grouped. Here we assess the eutrophication status in coastal waters by applying HEAT and compare the results with the national WFD assessments. The present test includes data on 33 selected coastal water bodies in five countries: Estonia, Finland, Latvia, Poland and Sweden. Data on reference condition, acceptable deviation, status and class boundaries of all indicators used in WFD for reporting ecological status (biological and physical-chemical) have been provided for each tested water body. The data has been inserted in the HEAT 1.0 and HEAT 3.0 tools and been compared with the national WFD assessments.   Both HEAT versions gave lower status in more than 50 % of the cases. For some tests the status changed to sub-GES from GES when HEAT is applied. The good/moderate boundary is the same in both HEAT and the WFD while the lower class boundaries in general are stricter in HEAT, which explains the lower status. In national WFD assessments expert judgment is used when there is little, no or very uncertain in situ data. The status in HEAT is given by the one-out-all-out principle but it is still possible to include expert judgment through the weighting factors.

    • Development of an oxygen consumption indicator

    It was investigated if the oxygen consumption can be used as an oxygen indicator for the Baltic Sea. The method is based on the idea of calculating the oxygen consumption in a stabile layer below the productive zone during summer and relating this to nutrient concentrations. With more nutrients available there is an increased biological production. By estimating how much oxygen is needed to mineralise the biological material it may be possible to link the oxygen consumption to eutrophication.

    The oxygen consumption was calculated for the BY15-Gotland Deep in the Eastern Gotland Basin. We identified a stabile layer between 30 and 50 m and a large change in both oxygen and nutrients from June to August. However, the oxygen consumption had a very high inter-annual variation and there were no significant correlation with the winter mean of nutrient concentrations. It was not possible to calculate the diffusion between the layers because of too sparse measurements at the stratification which limits the method. The calculation of the diffusion is however possible to improve with a model. Further on, the depth of the stabile layer is varying between areas and also between years.   We realised that the method has too many restrictions to be a functional indicator. A functional indicator shall not be dependent on heavy modelling or demand too much on expert judgement. We also investigated if a possible candidate to use as a more simple oxygen consumption indicator could be the use of oxygen saturation at a specific depth. If we assume that the temperature has not changed much since the establishment of stratification we may expect that changes in oxygen saturation observed in August at this depth would be caused by the biological oxygen consumption occurring during late spring and summer. The correlation with winter mean nutrients slightly improved in this case.

  • 38.
    Wesslander, Karin
    SMHI, Core Services.
    Coastal eutrophication status assessment using HEAT 1.0 (WFD methodology) versus HEAT 3.0 (MSFD methodology) and Development of an oxygen consumption indicator2017Report (Other academic)
    Abstract [en]

    This report contains two parts which are self standing reports and a contribution to the HELCOM project EUTRO-OPER. The work has been funded and commissioned by SwAM (Swedish agency for marine and water management) 2014-2015.

    • Coastal eutrophication status assessment using HEAT 1.0 (WFD methodology) versus HEAT 3.0 (MSFD methodology)

    Eutrophication status is assessed nationally in coastal waters within the Water Framework Directive (WFD) and in open sea areas within the Marine Strategy Framework Directive (MSFD). Both WFD and MSFD consider eutrophication but with different approaches and it is therefore a need for harmonisation in the assessment process.  The Excel based tool HEAT (HELCOM Eutrophication Assessment Tool) has been used in previous assessments in the HELCOM region. There are two versions of the tool; HEAT 1.0 and HEAT 3.0, the first is based on the WFD methodology and the second is based on the MSFD methodology. The main difference between HEAT 1.0 and HEAT 3.0 is how the indicators are grouped. Here we assess the eutrophication status in coastal waters by applying HEAT and compare the results with the national WFD assessments. The present test includes data on 33 selected coastal water bodies in five countries: Estonia, Finland, Latvia, Poland and Sweden. Data on reference condition, acceptable deviation, status and class boundaries of all indicators used in WFD for reporting ecological status (biological and physical-chemical) have been provided for each tested water body. The data has been inserted in the HEAT 1.0 and HEAT 3.0 tools and been compared with the national WFD assessments.  Both HEAT versions gave lower status in more than 50 % of the cases. For some tests the status changed to sub-GES from GES when HEAT is applied. The good/moderate boundary is the same in both HEAT and the WFD while the lower class boundaries in general are stricter in HEAT, which explains the lower status. In national WFD assessments expert judgment is used when there is little, no or very uncertain in situ data. The status in HEAT is given by the one-out-all-out principle but it is still possible to include expert judgment through the weighting factors.

    • Development of an oxygen consumption indicator

    t was investigated if the oxygen consumption can be used as an oxygen indicator for the Baltic Sea. The method is based on the idea of calculating the oxygen consumption in a stabile layer below the productive zone during summer and relating this to nutrient concentrations. With more nutrients available there is an increased biological production. By estimating how much oxygen is needed to mineralise the biological material it may be possible to link the oxygen consumption to eutrophication. The oxygen consumption was calculated for the BY15-Gotland Deep in the Eastern Gotland Basin. We identified a stabile layer between 30 and 50 m and a large change in both oxygen and nutrients from June to August. However, the oxygen consumption had a very high inter-annual variation and there were no significant correlation with the winter mean of nutrient concentrations. It was not possible to calculate the diffusion between the layers because of too sparse measurements at the stratification which limits the method. The calculation of the diffusion is however possible to improve with a model. Further on, the depth of the stabile layer is varying between areas and also between years.  We realised that the method has too many restrictions to be a functional indicator. A functional indicator shall not be dependent on heavy modelling or demand too much on expert judgement. 

    We also investigated if a possible candidate to use as a more simple oxygen consumption indicator could be the use of oxygen saturation at a specific depth. If we assume that the temperature has not changed much since the establishment of stratification we may expect that changes in oxygen saturation observed in August at this depth would be caused by the biological oxygen consumption occurring during late spring and summer. The correlation with winter mean nutrients slightly improved in this case.

  • 39.
    Wesslander, Karin
    et al.
    SMHI, Core Services.
    Viktorsson, Lena
    SMHI, Core Services.
    Fölster, Jens
    Drakare, Stina
    Sonesten, Lars
    Förslag till plan för revidering av fysikalisk-kemiska bedömningsgrunder för ekologisk status i sjöar, vattendrag och kustvatten Del A: SJÖAR OCH VATTENDRAG (SLU) Del B: KUSTVATTEN (SMHI)2017Report (Other academic)
  • 40.
    Wesslander, Karin
    et al.
    SMHI, Core Services.
    Andersson, Lars
    SMHI, Core Services.
    Axe, Philip
    SMHI, Research Department, Oceanography.
    Johansson, Johannes
    SMHI, Core Services.
    Linders, Johanna
    SMHI, Core Services.
    Nexelius, Nils
    SMHI, Core Services.
    Skjevik, Ann-Turi
    SMHI, Core Services.
    Swedish National Report on Eutrophication Status in the Skagerrak, Kattegat and the Sound - OSPAR ASSESSMENT 20162017Report (Other academic)
    Abstract [en]

    The Swedish OSPAR waters were assessed by applying the OSPAR Common Procedure for the time period 2006 – 2014. The Swedish parts of Skagerrak, Kattegat and the Sound constitute the outer part of the transition zone between the estuarine Baltic Sea and the oceanic North Sea and were investigated for nutrients, chlorophyll-a,oxygen, macrophytes, phytoplankton and zoobenthos. The conclusion from the overall assessment of the Swedish OSPAR waters was that only Skagerrak open sea could be classified as a Non-Problem Area and all other assessment units were classified as Problem Areas.  Atmospheric input of nitrogen significantly decreased in both Skagerrak and Kattegat and the land based input of total nutrients also decreased in Skagerrak, Kattegat as well as the Sound. However, the short-term trend of nitrogen input to the Sound was positive. Skagerrak is governed by trans-boundary transports from the North Sea of mainly nitrogen but also phosphorus. Kattegat receives trans-boundary nutrients from both the Baltic Sea through the Sound and from Skagerrak and transports nutrients towards the coast and the western part of the basin.  Overall, concentrations of DIN, DIP, TN and chlorophyll-a decreased in most areas, however, no significant trends were found for DIP. Increasing concentrations were found in silicate, POC and TP. The Secchi depth increased in most areas. Oxygen deficiency was mainly a problem in the fjords and the Kattegat open sea.  In Skagerrak coastal waters winter nutrients were only elevated in the fjords. Concentrations of DIN generally decreased significantly and there were tendencies of decreasing DIP. This pattern was also supported by the total nitrogen while total phosphorus increased. Secchi depth was improving and there was a significant positive trend of increasing depths. However, zoobenthos were still in bad condition and phytoplankton indicator species were often elevated. Chlorophyll-a concentrations were generally decreasing but still elevated in the inner coastal waters. There were also problems with algal toxins such as DST (Diarrhetic Shellfish Toxin) and PST (Paralystic Shellfish Toxin) infections in the area. According to the OSPAR classification scheme, a unit with no evident increased nutrient enrichment can be classified as a Problem Area but the cause might be due to trans-boundary transport from adjacent areas. In the open area of Kattegat there were still problems with oxygen deficiency, especially in the southern parts, even though the trend was significantly positive for the assessment period 2006 – 2014. Concentrations of chlorophyll-a and DIN decreased significantly, however, DIN levels were still generally elevated, especially in the southern parts of Kattegat while DIP was closer to the assessment level. In Kattegat coastal waters winter nutrients were elevated in all assessment units, except from the inner coastal waters, even though there was a general pattern of decreasing going trends. Chlorophyll-a was mainly elevated in the Sound and the estuaries. Secchi depth is generally improving and a significant increase was seen in the Sound. Also in Kattegat, zoobenthos were in bad condition and phytoplankton indicator species were often elevated. 

  • 41.
    Andersson, Pia
    et al.
    SMHI, Core Services.
    Hansson, Martin
    SMHI, Core Services.
    Bjurström, Joel
    Simonsson, Daniel
    Naturtypsbestämning av miljöövervakningsstationer SMHI pelagial miljöövervakning2017Report (Other academic)
    Abstract [en]

    Sampling stations in the national environmental monitoring in the marine environment is not defined when it comes to habitat. This means that the environmental monitoring data collected cannot be properly used in the assessments connected to the Habitats Directive or the Marine Framework Strategy Directive. SwAM has funded and commissioned SMHI to explore the possibilities to in a simple manner classify the habitats for the SMHI monitoring stations. The project was intended to test the equipment and through drop video examine if it is possible, and if so, determine habitats for the open sea stations during the expedition in December, 2016. SMHI has designed a rig and conducted sampling at 11 of 25 monitoring stations. Lighting problems and weather conditions reduced the number of sampled stations. SMHI:s opinion is that the rig, with adjusted light source, is a good tool for visual investigation of the habitats at the monitoring stations in the open sea. However, we have proposed a number of adjustments to the rig to increase the quality of the images and videos and to increase the possibility to carry out further assessments of the material. Most of the images show very fine-grained material like silt / clay. A few species have been recorded and almost no vegetation. Most of the stations did not meet the criteria for the Habitat Directive . At two stations habitat was registered as 1160 Bays and sounds, containing1110 Sandbanks. For HUB Underwater biotopes, AB.H3O Baltic aphotic muddy sediments Characterized by infaunal echinoderms was registered at the station P2 and AB.M4U Baltic aphotic mixed substrate Characterized by no macro community was registered on stations BY5 and BY4. SMHI recommends a review of the collected material together with ArtDatabanken and / or additional expert to ensure the performed assessment, to ensure recommendations and to quality control and define the material to be reported to a data host. SMHI recommend additional visual sampling of the remaining stations, as well as additional sampling on stations where the quality of the image was inadequate, or where ArtDatabanken or a possible additional expert recommend additional sampling. Additional experts may recommend adding sediment sampling to the visual method at some stations. Performing visual sampling of all 25 stations, with one landing per station, will extend the expedition with approximately 11,5-13, hours.

  • 42.
    Wesslander, Karin
    et al.
    SMHI, Core Services.
    Viktorsson, Lena
    SMHI, Core Services.
    Summary of the Swedish National Marine Monitoring 2016 - Hydrography, nutrients and phytoplankton2017Report (Other academic)
    Abstract [en]

    Results from the Swedish national marine monitoring in the pelagic during 2016 are presented. The institutes who conduct the national monitoring are SMHI (Swedish meteorological and hydrological institute), SU (Stockholm University) and UMF (Umeå marine sciences centre). The presented parameters in this report are; salinity, temperature, oxygen, dissolved inorganic phosphorous, total phosphorous, dissolved inorganic nitrogen, total nitrogen, dissolved silica, chlorophyll and phytoplankton. Secchi depth, zooplankton, humus, primary production, pH and alkalinity are also measured but not presented. Seasonal plots for surface waters are presented in Appendix I.  Time series for surface waters (0-10 m) and bottom waters are presented in Appendix II. The amount of nutrients in the sub-basins of the Baltic Sea is presented per season and year in Appendix III.Exceptional events 2016 

    • A warm September due to several high pressure systems, with temperatures more than one standard deviation above mean in almost all stations from Skagerrak, Kattegat and the Baltic Proper.
    • Low oxygen in Kattegat bottom water during autumn as can be seen in the seasonal plots for both Anholt E and Fladen.
    • Improved oxygen condition in the East Gotland Basin, due to an increased frequency of deep water inflows in comparison to the period 1983 until the large inflow in December 2014. The inflow of 30 km3 in the beginning of the year could be tracked in the deep water in the Eastern Gotland Basin in June.
    •  Elevated levels of silicate have been observed in the Baltic Sea since 2014 and the silicate levels were also elevated this year but mainly in the central and the northern parts of the Baltic Proper.
    • In July there were high cell numbers of the dinoflagellate Dinophysis acuminata, which caused high levels of toxins in blue mussels. During this period it was forbidden to harvest blue mussels along the Bohus coast.
    • Unusual long period of cyanobacteria bloom in the Baltic Sea.
  • 43.
    Wåhlström, Irene
    et al.
    SMHI, Research Department, Oceanography.
    Eilola, Kari
    SMHI, Research Department, Oceanography.
    Edman, Moa
    SMHI, Research Department, Oceanography.
    Almroth-Rosell, Elin
    SMHI, Research Department, Oceanography.
    Evaluation of open sea boundary conditions for the coastal zone. A model study in the northern part of the Baltic Proper.2017Report (Other academic)
    Abstract [en]

    The environmental conditions in the coastal zone are strongly connected with the conditions in the open sea as the transports across the boundaries are extensive. Therefore, it is of critical importance that coastal zone models have lateral boundary forcing of high quality and required parameters with good coverage in space and time.

    The Swedish Coastal zone Model (SCM) is developed at SMHI to calculate water quality in the coastal zone. This model is currently forced by the outcome from a one-dimensional model, assimilated to observations along the coast. However, these observations are scarce both in space, time and do usually not include all required parameters. In addition, the variability closer to the coast may be underestimated by the open sea monitoring stations used for the data assimilation. These problems are partly overcome by utilize the one-dimensional model that resolves all the variables used in the SCM. However, the method is not applicable for examine either the past period or future scenario where the latter analyze how climate change might affect the coastal zone. In the present study, we therefore evaluate the possibility to use results from a three-dimensional coupled physical and biogeochemical model of the Baltic Sea as open sea boundary conditions for the coastal zone, primarily to investigate the two periods mentioned above.

    Seven sensitivity experiments have been carried out in a pilot area of the coastal zone, the northern part of the Baltic proper, including the Stockholm Archipelago. The sensitivity tests were performed in order to explore methods to extract the outcome from the three-dimensional model, RCO-SCOBI, and apply as lateral boundary forcing for the SCM. RCO-SCOBI is a model for the open Baltic Sea with high horizontal and vertical resolution of the required variables. The results from the different tests were examined and evaluated against observations in the coastal zone. This was executed for both the physical and the biogeochemical variables utilizing a statistical method.

    The results from this study concluded that the outcome from the RCO-SCOBI is applicable as forcing files for the SCM. The best results in the tests was obtained with a method extracting depth profiles for the required variables from the RCO-SCOBI at a position 10 nautical miles to the east and 10 nautical miles to the south in the Baltic proper or north in the Gulf of Bothnia outside each of the outer basins.

  • 44.
    Stensen, Katarina
    et al.
    SMHI, Core Services.
    Tengdelius Brunell, Johanna
    SMHI, Professional Services.
    Sjökvist, Elin
    SMHI, Professional Services.
    Andersson, Elinor
    SMHI, Core Services.
    Eklund, Anna
    SMHI, Core Services.
    Vattentemperaturer och is i Mälaren Beräkningar för dagens och framtidens klimatförhållanden2017Report (Other academic)
    Abstract [sv]

    Denna rapport presenterar hur vattentemperatur och is beräknas förändras i Mälaren tillmitten av seklet och fram till 2100 på grund av den globala uppvärmningen.Beräkningarna är gjorda med en sjömodell där Mälaren är uppdelad i två bassänger. Dekallas västra Mälaren och östra Mälaren.De tydligaste förändringarna i Mälaren i ett framtida klimat beräknas bli högrevattentemperaturer både på ytan och på botten samt kortare period med is. Iberäkningarna har två framtidsscenarier använts, vilka baseras på mängden växthusgaser iatmosfären. I det högre scenariot, vilket motsvarar fortsatta utsläpp med dagensutsläppsnivåer, ökar vattentemperaturen mer jämfört med scenariot där utsläppen avväxthusgaser är begränsade.Sammanfattning av resultaten för klimatscenarierna: Den årliga perioden som Mälaren är täckt med is beräknas minska med enmånad till två månader mot slutet av seklet. Ytvattnets medeltemperatur beräknas öka 1,5 till 2,5 grader för bådabassängerna. Förändringen är ungefär lika stor under hela året. Bottenvattnets medeltemperatur väntas öka mellan 1 till 2 grader i den grundarevästra bassängen och 0,5 till 1,5 grader i den djupare östra bassängen.Förändringen är ungefär lika stor under hela året. Maxtemperaturen ökar något mer än medeltemperaturen för både ytvatten ochbottenvatten. Den period som ytvattnets dygnsmedeltemperatur är över 20 grader, ökar medcirka en månad upp till en och en halv månad.Medeltemperaturen och maxtemperaturen för dagens klimat är beräknad utifråntidsperioden 1997-2015 och utifrån 2032-2050 och 2080-2098 för ett framtida klimat.Maxtemperaturen är det högsta värdet som beräknas uppnås under perioden.

  • 45.
    Eklund, Anna
    et al.
    SMHI, Core Services.
    Tofeldt, Linda
    SMHI, Professional Services.
    Johnell, Anna
    SMHI, Professional Services.
    Andersson, Maria
    SMHI, Professional Services.
    Tengdelius Brunell, Johanna
    SMHI, Professional Services.
    German, Jonas
    SMHI.
    Sjökvist, Elin
    SMHI, Professional Services.
    Rasmusson, Maria
    SMHI, Professional Services.
    Harbman, Ulrika
    SMHI, Professional Services.
    Andersson, Elinor
    SMHI, Core Services.
    Vattennivåer, tappningar, vattentemperaturer och is i Vänern. Beräkningar för dagens och framtidens klimatförhållanden2017Report (Other academic)
    Abstract [sv]

    Beräkningar har gjorts för hur vattennivåer, tappningar, vattentemperatur och is beräknas förändras i Vänern fram till 2100 på grund av den globala uppvärmningen. De tydligaste förändringarna i Vänern och Göta älv i ett framtida klimat beräknas bli att:  Det blir vanligare med låga nivåer i Vänern.  Det blir vanligare med höga nivåer i Vänern.  Det blir vanligare med låga tappningar i Göta älv.  Det blir vanligare med höga tappningar i Göta älv.  Det blir högre vattentemperaturer.  Det blir kortare perioder med is. I denna rapport redovisas nya beräkningar för Vänerns nivåer som ersätter de tidigare beräkningarna från 2010 (Bergström m.fl. 2010).

  • 46.
    Eklund, Anna
    et al.
    SMHI, Core Services.
    Tofeldt, Linda
    SMHI, Professional Services.
    Tengdelius Brunell, Johanna
    SMHI, Professional Services.
    Johnell, Anna
    SMHI, Professional Services.
    German, Jonas
    SMHI.
    Sjökvist, Elin
    SMHI, Professional Services.
    Rasmusson, Maria
    SMHI, Professional Services.
    Andersson, Elinor
    SMHI, Core Services.
    Vattennivåer, tappningar, vattentemperaturer och is i Vättern Beräkningar för dagens och framtidens klimatförhållanden2017Report (Other academic)
    Abstract [en]

    Calculations have been made for how the water level, water release, water temperature and ice extent are expected to change in Lake Vättern up to the year 2100 due to global warming.The most noticeable effects of the future climate on Lake Vättern are expected to be:

    • More frequent low water levels
    • Less frequent high water levels
    • No change in the highest water levels (the calculated maximum water level)
    • An increase in water temperature
    • A shorter ice cover period.

    With a warmer climate the evaporation is expected to increase, both from vegetation in the lake’s catchment area as well as directly from the surface of the lake. This means that the water level in Lake Vättern is expected to be lower in the future. Calculations show that the average water level in Lake Vättern is expected to drop by one to two decimetres by the end of the century, with about the same reduction for all seasons.The number of days per year where the water level is below 88.3 m is expected to increase from the present value of around 1.5 months to about 3 months by the middle of the century and 4-6 months by the end of the century. The highest levels, the calculated maximum water level, are expected to remain unchanged in the future.

  • 47.
    Eklund, Anna
    et al.
    SMHI, Core Services.
    Johnell, Anna
    SMHI, Professional Services.
    Tofeldt, Linda
    SMHI, Professional Services.
    Tengdelius Brunell, Johanna
    SMHI, Professional Services.
    Andersson, Maria
    SMHI, Professional Services.
    Ivarsson, Cajsa-Lisa
    SMHI, Professional Services.
    German, Jonas
    SMHI.
    Sjökvist, Elin
    SMHI, Professional Services.
    Andersson, Elinor
    SMHI, Core Services.
    Vattennivåer, tappningar, vattentemperaturer och is i Hjälmaren Beräkningar för dagens och framtidens klimatförhållanden2017Report (Other academic)
    Abstract [en]

    Calculations have been made for how the water release, water abstraction, water temperature and ice extent are expected to change in Lake Hjälmaren up to the year 2100 due to global warming.The most noticeable effects of the future climate on Lake Hjälmaren are expected to be:

    • More frequent low water levels
    • No change in the highest water levels (the calculated maximum water level)
    • An increase in water temperature
    • A shorter ice cover period.

    The water level in Lake Hjälmaren is only expected to change by a small amount in the future climate. The most obvious change is that low water levels will be more frequent, especially during the summer and autumn. This is due to an expected increase in evaporation, both from vegetation in the lake’s catchment area and from the surface of the lake. Currently the water level is lower than 21.6 m for about one month per year onaverage. In the future the water level is expected to be lower than 21.6 m for about 3.5 months.For the highest water levels (calculated maximum water level) an increase is shown for the high emission scenario (RCP8.5) while changes are expected to be small for the scenario with limited emission of greenhouse gases (RCP4.5).The water temperature in Lake Hjälmaren is expected to increase by about half a degree by the middle of the century and by 1 to 2.5 degrees by the end of the century. The number of days per year where the surface water temperature exceeds 20 degrees is expected to increase from the current value of around 7 weeks per year to about 9 weeks per year by the middle of the century and up to 12 weeks per year by the end of the century. Currently Lake Hjälmaren is covered with ice every winter. In the future climate it is expected that there will be some winters without ice coverage. 

  • 48.
    Persson, Gunn
    et al.
    SMHI, Professional Services.
    Nylén, Linda
    SMHI, Professional Services.
    Berggreen-Clausen, Steve
    SMHI, Professional Services.
    Berg, Peter
    SMHI, Research Department, Climate research - Rossby Centre.
    Rayner, David
    SMHI.
    Sjökvist, Elin
    SMHI, Professional Services.
    Från utsläppsscenarier till lokal nederbörd och översvämningsrisker2016Report (Other academic)
    Abstract [en]

    In this report methods and results are presented from downscaling of about 40 climate scenarios to local time series for two drainage areas; River Torneå in northern Sweden and River Ätran in southern Sweden. Hydrological and hydraulic modelling has been made and flood maps have been produced for the cities Haparanda and Falkenberg. A study of future extreme precipitation is also presented. The work was performed within the project “Future rainfall and flooding in Sweden” financed by the Swedish Civil Contingencies Agency (MSB).

  • 49.
    Hansson, Martin
    et al.
    SMHI, Core Services.
    Andersson, Lars
    SMHI, Core Services.
    Oxygen Survey in the Baltic Sea 2016 - Extent of Anoxia and Hypoxia, 1960-20162016Report (Other academic)
  • 50.
    Höglund, Anders
    SMHI, Research Department, Oceanography.
    Invasive species in the Baltic Sea A model study of plankton transport2016Report (Other academic)
    Abstract [en]

    In this report, an ensemble of releases of passive particles at locations close to some

    selected ports around the Baltic Sea and Kattegat are modelled. The particles are

    transported with the currents. Maps of particle densities at 2, 4, 8, 16, 32 and 52

    weeks after the release are presented.

    The results indicate that many basins are narrow enough for the particles to cross

    from shore to shore within two weeks, e.g., in the Kattegat, Gulf of Finland and

    Kvarken. The results also show an asymmetry in the transport between different

    locations, which means that particles released from one location to another require

    substantially more time to reach the other location, if at all, than particles going

    in the opposite direction. Some potential barriers to transport are identified and

    discussed.

1234567 1 - 50 of 707
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.8
|