Change search
Refine search result
1234567 1 - 50 of 1388
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Tangang, Fredolin
    et al.
    Santisirisomboon, Jerasorn
    Juneng, Liew
    Salimun, Ester
    Chung, Jingxiang
    Supari, Supari
    Cruz, Faye
    Ngai, Sheau Tieh
    Ngo-Duc, Thanh
    Singhruck, Patama
    Narisma, Gemma
    Santisirisomboon, Jaruthat
    Wongsaree, Waranyu
    Promjirapawat, Kamphol
    Sukamongkol, Yod
    Srisawadwong, Ratchanan
    Setsirichok, Damrongrit
    Phan-Van, Tan
    Aldrian, Edvin
    Gunawan, Dodo
    Nikulin, Grigory
    SMHI, Research Department, Climate research - Rossby Centre.
    Yang, Hongwei
    Projected future changes in mean precipitation over Thailand based on multi-model regional climate simulations of CORDEX Southeast Asia2019In: International Journal of Climatology, ISSN 0899-8418, E-ISSN 1097-0088, Vol. 39, no 14, p. 5413-5436Article in journal (Refereed)
  • 2. Im, Ulas
    et al.
    Christensen, Jesper H.
    Nielsen, Ole-Kenneth
    Sand, Maria
    Makkonen, Risto
    Geels, Camilla
    Andersson, Camilla
    SMHI, Research Department, Air quality.
    Kukkonen, Jaakko
    Lopez-Aparicio, Susana
    Brandt, Jorgen
    Contributions of Nordic anthropogenic emissions on air pollution and premature mortality over the Nordic region and the Arctic2019In: Atmospheric Chemistry And Physics, ISSN 1680-7316, E-ISSN 1680-7324, Vol. 19, no 20, p. 12975-12992Article in journal (Refereed)
  • 3.
    Meier, Markus
    et al.
    SMHI, Research Department, Oceanography.
    Dieterich, Christian
    SMHI, Research Department, Oceanography.
    Eilola, Kari
    SMHI, Research Department, Oceanography.
    Groger, Matthias
    SMHI, Research Department, Oceanography.
    Höglund, Anders
    SMHI, Research Department, Oceanography.
    Radtke, Hagen
    Saraiva, Sofia
    Wåhlstrom, Irene
    SMHI, Research Department, Oceanography.
    Future projections of record-breaking sea surface temperature and cyanobacteria bloom events in the Baltic Sea2019In: Ambio, ISSN 0044-7447, E-ISSN 1654-7209, Vol. 48, no 11, p. 1362-1376Article in journal (Refereed)
  • 4.
    Bartosova, Alena
    et al.
    SMHI, Research Department, Hydrology.
    Capell, Réne
    SMHI, Research Department, Hydrology.
    Olesen, Jorgen E.
    Jabloun, Mohamed
    Refsgaard, Jens Christian
    Donnelly, Chantal
    SMHI, Research Department, Hydrology.
    Hyytiainen, Kari
    Pihlainen, Sampo
    Zandersen, Marianne
    Arheimer, Berit
    SMHI, Research Department, Hydrology.
    Future socioeconomic conditions may have a larger impact than climate change on nutrient loads to the Baltic Sea2019In: Ambio, ISSN 0044-7447, E-ISSN 1654-7209, Vol. 48, no 11, p. 1325-1336Article in journal (Refereed)
  • 5. Bauer, Barbara
    et al.
    Gustafsson, Bo G.
    Hyytiainen, Kari
    Meier, Markus
    SMHI, Research Department, Oceanography.
    Mueller-Karulis, Baerbel
    Saraiva, Sofia
    SMHI, Research Department, Oceanography.
    Tomczak, Maciej T.
    Food web and fisheries in the future Baltic Sea2019In: Ambio, ISSN 0044-7447, E-ISSN 1654-7209, Vol. 48, no 11, p. 1337-1349Article in journal (Refereed)
  • 6. Olesen, Jorgen E.
    et al.
    Borgesen, Christen D.
    Hashemi, Fatemeh
    Jabloun, Mohamed
    Bar-Michalczyk, Dominika
    Wachniew, Przemyslaw
    Zurek, Anna J.
    Bartosova, Alena
    SMHI, Research Department, Hydrology.
    Bosshard, Thomas
    SMHI, Research Department, Hydrology.
    Hansen, Anne L.
    Refsgaard, Jens C.
    Nitrate leaching losses from two Baltic Sea catchments under scenarios of changes in land use, land management and climate2019In: Ambio, ISSN 0044-7447, E-ISSN 1654-7209, Vol. 48, no 11, p. 1252-1263Article in journal (Refereed)
  • 7. Neset, Tina-Simone
    et al.
    Wilk, Julie
    Navarra, Carlo
    Capell, Réne
    SMHI, Research Department, Hydrology.
    Bartosova, Alena
    SMHI, Research Department, Hydrology.
    Visualization-supported dialogues in the Baltic Sea Region2019In: Ambio, ISSN 0044-7447, E-ISSN 1654-7209, Vol. 48, no 11, p. 1314-1324Article in journal (Refereed)
  • 8. Refsgaard, Jens Christian
    et al.
    Hansen, Anne L.
    Hojberg, Anker L.
    Olesen, Jorgen E.
    Hashemi, Fatemeh
    Wachniew, Przemyslaw
    Worman, Anders
    Bartosova, Alena
    SMHI, Research Department, Hydrology.
    Stelljes, Nico
    Chubarenko, Boris
    Spatially differentiated regulation: Can it save the Baltic Sea from excessive N-loads?2019In: Ambio, ISSN 0044-7447, E-ISSN 1654-7209, Vol. 48, no 11, p. 1278-1289Article in journal (Refereed)
  • 9. Cavazos, Tereza
    et al.
    Luna-Nino, Rosa
    Cerezo-Mota, Ruth
    Fuentes Franco, Ramon
    SMHI, Research Department, Climate research - Rossby Centre.
    Mendez, Matias
    Pineda Martinez, Luis Felipe
    Valenzuela, Ernesto
    Climatic trends and regional climate models intercomparison over the CORDEX-CAM (Central America, Caribbean, and Mexico) domain2019In: International Journal of Climatology, ISSN 0899-8418, E-ISSN 1097-0088Article in journal (Refereed)
    Abstract [en]

    An intercomparison of three regional climate models (RCMs) (PRECIS-HadRM3P, RCA4, and RegCM4) was performed over the Coordinated Regional Dynamical Experiment (CORDEX)-Central America, Caribbean, and Mexico (CAM) domain to determine their ability to reproduce observed temperature and precipitation trends during 1980-2010. Particular emphasis was given to the North American monsoon (NAM) and the mid-summer drought (MSD) regions. The three RCMs show negative (positive) temperature (precipitation) biases over the mountains, where observations have more problems due to poor data coverage. Observations from the Climate Research Unit (CRU) and ERA-Interim show a generalized warming over the domain. The most significant warming trend (>= 0.34 degrees C/decade) is observed in the NAM, which is moderately captured by the three RCMs, but with less intensity; each decade from 1970 to 2016 has become warmer than the previous ones, especially during the summer (mean and extremes); this warming appears partially related to the positive Atlantic Multidecadal Oscillation (+AMO). CRU, GPCP, and CHIRPS show significant decreases of precipitation (less than -15%/decade) in parts of the southwest United States and northwestern Mexico, including the NAM, and a positive trend (5-10%/decade) in June-September in eastern Mexico, the MSD region, and northern South America, but longer trends (1950-2017) are not statistically significant. RCMs are able to moderately simulate some of the recent trends, especially in winter. In spite of their mean biases, the RCMs are able to adequately simulate inter-annual and seasonal variations. Wet (warm) periods in regions affected by the MSD are significantly correlated with the +AMO and La Nina events (+AMO and El Nino). Summer precipitation trends from GPCP show opposite signs to those of CRU and CHIRPS over the Mexican coasts of the southern Gulf of Mexico, the Yucatan Peninsula, and Cuba, possibly due to data limitations and differences in grid resolutions.

  • 10. Corrales-Suastegui, Arturo
    et al.
    Fuentes Franco, Ramon
    SMHI, Research Department, Climate research - Rossby Centre.
    Pavia, Edgar G.
    The mid-summer drought over Mexico and Central America in the 21st century2019In: International Journal of Climatology, ISSN 0899-8418, E-ISSN 1097-0088Article in journal (Refereed)
    Abstract [en]

    The southern Mexico and Central America (SMCA) region shows a dominant well-defined precipitation annual cycle. The rainy season usually begins in May and ends in October, with a relatively dry period in July and August known as the mid-summer drought (MSD); notable exceptions are the Caribbean coast of Honduras and Costa Rica. This MSD phenomenon is expected to be affected as the SMCA experiences an enhanced differential warming between the Pacific and Atlantic Oceans (PO-AO) towards the end of the 21st century. Previous studies have suggested that this differential warming will induce a strengthening of the westward Caribbean low-level jet (CLLJ) and that this heightened CLLJ will shift precipitation westwards, falling on the PO instead that within the SMCA region causing a severe drought. In this work we examine this scenario with a new model, the Rossby Center Regional Climate Model (RCA4), for the COordinated Regional climate Downscaling EXperiment (CORDEX) Central America domain, forced with different general circulation models (GCMs) and for different representative concentration paths (RCPs). We consider 25-year periods as "present conditions" (1981-2005) and "future scenario" (2071-2095), focusing on the "extended summer" season (May-October). Results suggest that in the future the spatial extension of the MSD will decrease and that in certain areas the MSD will be more intense but less frequent compared to present conditions. Also, the oceanic differential warming, the intensification of the CLLJ, and the reduction in regional precipitation in the future scenario, suggested by previous works, were verified in this study.

  • 11.
    Landelius, Tomas
    et al.
    SMHI, Research Department, Atmospheric remote sensing.
    Andersson, Sandra
    SMHI, Core Services.
    Abrahamsson, Roger
    Modelling and forecasting PV production in the absence of behind-the-meter measurements2019In: Progress in Photovoltaics, ISSN 1062-7995, E-ISSN 1099-159X, Vol. 27, no 11, p. 990-998Article in journal (Refereed)
  • 12. Kniebusch, Madline
    et al.
    Meier, Markus
    SMHI, Research Department, Oceanography.
    Radtke, Hagen
    Changing Salinity Gradients in the Baltic Sea As a Consequence of Altered Freshwater Budgets2019In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 46, no 16, p. 9739-9747Article in journal (Refereed)
  • 13. Akperov, Mirseid
    et al.
    Rinke, Annette
    Mokhov, Igor I.
    Semenov, Vladimir A.
    Parfenova, Mariya R.
    Matthes, Heidrun
    Adakudlu, Muralidhar
    Boberg, Fredrik
    Christensen, Jens H.
    Dembitskaya, Mariya A.
    Dethloff, Klaus
    Fettweis, Xavier
    Gutjahr, Oliver
    Heinemann, Gunther
    Koenigk, Torben
    SMHI, Research Department, Climate research - Rossby Centre.
    Koldunov, Nikolay, V
    Laprise, Rene
    Mottram, Ruth
    Nikiema, Oumarou
    Sein, Dmitry
    Sobolowski, Stefan
    Winger, Katja
    Zhang, Wenxin
    Future projections of cyclone activity in the Arctic for the 21st century from regional climate models (Arctic-CORDEX)2019In: Global and Planetary Change, ISSN 0921-8181, E-ISSN 1872-6364, Vol. 182, article id UNSP 103005Article in journal (Refereed)
  • 14. Soares, Ana R. A.
    et al.
    Lapierre, Jean-Francois
    Selvam, Balathandayuthabani P.
    Lindström, Göran
    SMHI, Research Department, Hydrology.
    Berggren, Martin
    Controls on Dissolved Organic Carbon Bioreactivity in River Systems2019In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 9, article id 14897Article in journal (Refereed)
  • 15. Dersch, Juergen
    et al.
    Schroedter-Homscheidt, Marion
    Gairaa, Kacem
    Hanrieder, Natalie
    Landelius, Tomas
    SMHI, Research Department, Atmospheric remote sensing.
    Lindskog, Magnus
    SMHI, Research Department, Meteorology.
    Mueller, Stefan C.
    Santigosa, Lourdes Ramirez
    Sirch, Tobias
    Wilbert, Stefan
    Impact of DNI nowcasting on annual revenues of CSP plants for a time of delivery based feed in tariff2019In: Meteorologische Zeitschrift, ISSN 0941-2948, E-ISSN 1610-1227, Vol. 28, no 3, p. 235-253Article in journal (Refereed)
  • 16.
    Crochemore, Louise
    et al.
    SMHI, Research Department, Hydrology.
    Isberg, Kristina
    SMHI, Research Department, Hydrology.
    Pimentel, Rafael
    SMHI, Research Department, Hydrology.
    Pineda, L.
    SMHI.
    Hasan, Abdulghani
    SMHI, Research Department, Hydrology.
    Arheimer, Berit
    SMHI, Research Department, Hydrology.
    Lessons learnt from checking the quality of openly accessible river flow data worldwide2019In: Hydrological Sciences Journal, ISSN 0262-6667, E-ISSN 2150-3435, no 64Article in journal (Refereed)
  • 17. Hankin, Barry
    et al.
    Strömqvist, Johan
    SMHI, Research Department, Hydrology.
    Burgess, Chris
    Pers, Charlotta
    SMHI, Research Department, Hydrology.
    Bielby, Sally
    Revilla-Romero, Beatriz
    Pope, Linda
    A New National Water Quality Model to Evaluate the Effectiveness of Catchment Management Measures in England2019In: Water, ISSN 2073-4441, E-ISSN 2073-4441, Vol. 11, no 8, article id 1612Article in journal (Refereed)
    Abstract [en]

    This investigation reports on a new national model to evaluate the effectiveness of catchment sensitive farming in England, and how pollution mitigation measures have improved water quality between 2006 and 2016. An adapted HYPE (HYdrological Predictions for the Environment) model was written to use accurate farm emissions data so that the pathway impact could be accounted for in the land phase of transport. Farm emissions were apportioned into different runoff fractions simulated in surface and soil layers, and travel time and losses were taken into account. These were derived from the regulator's catchment change matrix' and converted to monthly load time series, combined with extensive point source load datasets. Very large flow and water quality monitoring datasets were used to calibrate the model nationally for flow, nitrogen, phosphorus, suspended sediments and faecal indicator organisms. The model was simulated with and without estimated changes to farm emissions resulting from catchment measures, and spatial and temporal changes to water quality concentrations were then assessed.

  • 18. Frogner, Inger-Lise
    et al.
    Singleton, Andrew T.
    Koltzow, Morten O.
    Andrae, Ulf
    SMHI, Research Department, Meteorology.
    Convection-permitting ensembles: Challenges related to their design and use2019In: Quarterly Journal of the Royal Meteorological Society, ISSN 0035-9009, E-ISSN 1477-870X, Vol. 145, p. 90-106Article in journal (Refereed)
    Abstract [en]

    Challenges related to the design and use of a convection-permitting ensemble (CPEPS) are discussed. In particular the scale-dependent predictability of precipitation and the use of a CPEPS as well as its potential added value over global ensemble prediction systems (EPS) are investigated. Forecasts of precipitation from the operational CPEPS in Finland, Norway and Sweden (MEPS) are used for the investigations. It is found that predictability for scales smaller than similar to 60 km is lost rapidly within the first 6 h of the forecast with the smallest predictable scale growing more slowly to similar to 100 km over the following 18-24 h. However, there is large case-to-case variability and the ensemble perturbations fail to become fully saturated, especially in winter, suggesting a weakness in the design of the ensemble. The added value of CPEPS over deterministic forecasts and coarser resolution EPSs is discussed with summary statistics and case-studies. It is shown that the added value varies between seasons and lead times. For precipitation there is an added value for both severe precipitation events and for precipitation/no precipitation decisions. The added value is higher in summer compared to winter and for shorter lead times compared to longer lead times.

  • 19. Lewerin, S. S.
    et al.
    Sokolova, E.
    Wahlstrom, H.
    Lindström, Göran
    SMHI, Research Department, Hydrology.
    Pers, Charlotta
    SMHI, Research Department, Hydrology.
    Strömqvist, Johan
    SMHI, Research Department, Hydrology.
    Soren, K.
    Potential infection of grazing cattle via contaminated water: a theoretical modelling approach2019In: Animal, ISSN 1751-7311, E-ISSN 1751-732X, Vol. 13, no 9, p. 2052-2059, article id PII S1751731118003415Article in journal (Refereed)
    Abstract [en]

    Wastewater discharge and agricultural activities may pose microbial risks to natural water sources. The impact of different sources can be assessed by water quality modelling. The aim of this study was to use hydrological and hydrodynamic models to illustrate the risk of exposing grazing animals to faecal pollutants in natural water sources, using three zoonotic faecal pathogens as model microbes and fictitious pastures in Sweden as examples. Microbial contamination by manure from fertilisation and grazing was modelled by use of a hydrological model (HYPE) and a hydrodynamic model (MIKE 3 FM), and microbial contamination from human wastewater was modelled by application of both models in a backwards process. The faecal pathogens Salmonella spp., verotoxin-producing Escherichia coli O157:H7 (VTEC) and Cryptosporidium parvum were chosen as model organisms. The pathogen loads on arable land and pastures were estimated based on pathogen concentration in cattle faeces, herd prevalence and within-herd prevalence. Contamination from human wastewater discharge was simulated by estimating the number of pathogens required from a fictitious wastewater discharge to reach a concentration high enough to cause infection in cattle using the points on the fictitious pastures as their primary source of drinking water. In the scenarios for pathogens from animal sources, none of the simulated concentrations of salmonella exceeded the concentrations needed to infect adult cattle. For VTEC, most of the simulated concentrations exceeded the concentration needed to infect calves. For C. parvum, all the simulated concentrations exceeded the concentration needed to infect calves. The pathogen loads needed at the release points for human wastewater to achieve infectious doses for cattle were mostly above the potential loads of salmonella and VTEC estimated to be present in a 24-h overflow from a medium-size Swedish wastewater treatment plant, while the required pathogen loads of C. parvum at the release points were below the potential loads of C. parvum in a 24-h wastewater overflow. Most estimates in this study assume a worst-case scenario. Controlling zoonotic infections at herd level prevents environmental contamination and subsequent human exposure. The potential for infection of grazing animals with faecal pathogens has implications for keeping animals on pastures with access to natural water sources. As the infectious dose for most pathogens is more easily reached for calves than for adult animals, and young calves are also the main shedders of C. parvum, keeping young calves on pastures adjacent to natural water sources is best avoided.

  • 20. Molinder, Jennie
    et al.
    Körnich, Heiner
    SMHI, Research Department, Meteorology.
    Olsson, Esbjörn
    SMHI, Research Department, Meteorology.
    Hessling, Peter
    The Use of Uncertainty Quantification for the Empirical Modeling of Wind Turbine Icing2019In: Journal of Applied Meteorology and Climatology, ISSN 1558-8424, E-ISSN 1558-8432, Vol. 58, no 9, p. 2019-2032Article in journal (Refereed)
    Abstract [en]

    A novel uncertainty quantification method is used to evaluate the impact of uncertainties of parameters within the icing model in the modeling chain for icing-related wind power production loss forecasts. As a first step, uncertain parameters in the icing model were identified from the literature and personal communications. These parameters are the median volume diameter of the hydrometeors, the sticking efficiency for snow and graupel, the Nusselt number, the shedding factor, and the wind erosion factor. The sensitivity of these parameters on icing-related wind power production losses is examined. An icing model ensemble representing the estimated parameter uncertainties is designed using so-called deterministic sampling and is run for two periods over a total of 29 weeks. Deterministic sampling allows an exact representation of the uncertainty and, in future applications, further calibration of these parameters. Also, the number of required ensemble members is reduced drastically relative to the commonly used random-sampling method, thus enabling faster delivery and a more flexible system. The results from random and deterministic sampling are compared and agree very well, confirming the usefulness of deterministic sampling. The ensemble mean of the nine-member icing model ensemble generated with deterministic sampling is shown to improve the forecast skill relative to one single forecast for the winter periods. In addition, the ensemble spread provides valuable information as compared with a single forecast in terms of forecasting uncertainty. However, addressing uncertainties in the icing model alone underestimates the forecast uncertainty, thus stressing the need for a fully probabilistic approach in the modeling chain for wind power forecasts in a cold climate.

  • 21.
    Hieronymus, Magnus
    et al.
    SMHI, Research Department, Oceanography.
    Hieronymus, Jenny
    SMHI, Research Department, Oceanography.
    Hieronymus, Fredrik
    On the Application of Machine Learning Techniques to Regression Problems in Sea Level Studies2019In: Journal of Atmospheric and Oceanic Technology, ISSN 0739-0572, E-ISSN 1520-0426, Vol. 36, no 9, p. 1889-1902Article in journal (Refereed)
    Abstract [en]

    Long sea level records with high temporal resolution are of paramount importance for future coastal protection and adaptation plans. Here we discuss the application of machine learning techniques to some regression problems commonly encountered when analyzing such time series. The performance of artificial neural networks is compared with that of multiple linear regression models on sea level data from the Swedish coast. The neural networks are found to be superior when local sea level forcing is used together with remote sea level forcing and meteorological forcing, whereas the linear models and the neural networks show similar performance when local sea level forcing is excluded. The overall performance of the machine learning algorithms is good, often surpassing that of the much more computationally costly numerical ocean models used at our institute.

  • 22. Kratzer, Susanne
    et al.
    Kyryliuk, Dmytro
    Edman, Moa
    SMHI, Research Department, Oceanography.
    Philipson, Petra
    Lyon, Steve W.
    Synergy of Satellite, In Situ and Modelled Data for Addressing the Scarcity of Water Quality Information for Eutrophication Assessment and Monitoring of Swedish Coastal Waters2019In: Remote Sensing, ISSN 2072-4292, E-ISSN 2072-4292, Vol. 11, no 17Article in journal (Refereed)
    Abstract [en]

    Monthly CHL-a and Secchi Depth (SD) data derived from the full mission data of the Medium Resolution Imaging Spectrometer (MERIS; 2002-2012) were analysed along a horizontal transect from the inner Braviken bay and out into the open sea. The CHL-a values were calibrated using an algorithm derived from Swedish lakes. Then, calibrated Chl-a and Secchi Depth (SD) estimates were extracted from MERIS data along the transect and compared to conventional monitoring data as well as to data from the Swedish Coastal zone Model (SCM), providing physico-biogeochemical parameters such as temperature, nutrients, Chlorophyll-a (CHL-a) and Secchi depth (SD). A high negative correlation was observed between satellite-derived CHL-a and SD (rho = -0.91), similar to the in situ relationship established for several coastal gradients in the Baltic proper. We also demonstrate that the validated MERIS-based estimates and data from the SCM showed strong correlations for the variables CHL-a, SD and total nitrogen (TOTN), which improved significantly when analysed on a monthly basis across basins. The relationship between satellite-derived CHL-a and modelled TOTN was also evaluated on a monthly basis using least-square linear regression models. The predictive power of the models was strong for the period May-November (R-2: 0.58-0.87), and the regression algorithm for summer was almost identical to the algorithm generated from in situ data in Himmerfjarden bay. The strong correlation between SD and modelled TOTN confirms that SD is a robust and reliable indicator to evaluate changes in eutrophication in the Baltic proper which can be assessed using remote sensing data. Amongst all three assessed methods, only MERIS CHL-a was able to correctly depict the pattern of phytoplankton phenology that is typical for the Baltic proper. The approach of combining satellite data and physio-biogeochemical models could serve as a powerful tool and value-adding complement to the scarcely available in situ data from national monitoring programs. In particular, satellite data will help to reduce uncertainties in long-term monitoring data due to its improved measurement frequency.

  • 23. Pereira, Susana Cardoso
    et al.
    Marta-Almeida, Martinho
    Carvalho, Ana
    SMHI, Research Department, Air quality.
    Rocha, Alfredo
    Extreme precipitation events under climate change in the Iberian Peninsula2019In: International Journal of Climatology, ISSN 0899-8418, E-ISSN 1097-0088Article in journal (Refereed)
    Abstract [en]

    Precipitation is one of the most important atmospheric variables to assess, particularly in the context of climate change. This study evaluates future changes in precipitation over the Iberian Peninsula (IP) under the RCP8.5 scenario. Changes are assessed for two future climate periods namely (2046-2065) and (2081-2100), relative to a recent reference climate (1986-2005). Here we introduce the concept of precipitation episodes (PEs) and estimate their statistical properties for the present climate and, their changes for future climate scenarios. PEs are defined by considering a full range of durations as well as intensities. This constitutes a novel approach to estimate changes with relevance, for example, for water resources applications. The climate simulations are performed with the Weather Research and Forecast (WRF) model. These are compared with an ensemble of other similar simulations from the Coordinated Downscaling Experiment initiative. This was done to evaluate the performance of the WRF model and also to estimate uncertainty of the derived future projections. Since models may present systematic errors, results from all simulations were previously bias corrected relative to observations using the same quantile mapping method. Under climate change, a great part of the region is expected to experience reduced annual precipitation of approximately 20-40% and reaching 80% in summer by the end of the XXI century. For the PEs, a large reduction in the average number of days and duration of all types of PEs is expected across all seasons and regions. The average intensity of episodes is projected to increase in winter and spring and decrease in summer. These results imply that climate change will likely influence precipitation and precipitation extremes in the 21st century, mostly in southern areas. These, together with projected warming may amplify desertification already taking place in the southern regions of the IP and cause stresses to water resources.

  • 24. Vercauteren, Nikki
    et al.
    Boyko, Vyacheslav
    Kaiser, Amandine
    Belusic, Danijel
    SMHI, Research Department, Climate research - Rossby Centre.
    Statistical Investigation of Flow Structures in Different Regimes of the Stable Boundary Layer2019In: Boundary-layer Meteorology, ISSN 0006-8314, E-ISSN 1573-1472, Vol. 173, no 2, p. 143-164Article in journal (Refereed)
    Abstract [en]

    A combination of methods originating from non-stationary time-series analysis is applied to two datasets of near-surface turbulence in order to gain insights on the non-stationary enhancement mechanism of intermittent turbulence in the stable atmospheric boundary layer (SBL). We identify regimes of SBL turbulence for which the range of time scales of turbulence and submeso motions, and hence their scale separation (or lack of separation), differs. Ubiquitous flow structures, or events, are extracted from the turbulence data in each flow regime. We relate flow regimes characterized by very stable stratification, but differing in the dynamical interactions and in the transport properties of different scales of motion, to a signature of flow structures thought to be submeso motions.

  • 25. Porson, Aurore N.
    et al.
    Hagelin, Susanna
    SMHI, Research Department.
    Boyd, Douglas F. A.
    Roberts, Nigel M.
    North, Rachel
    Webster, Stuart
    Lo, Jeff Chun-Fung
    Extreme rainfall sensitivity in convective-scale ensemble modelling over Singapore2019In: Quarterly Journal of the Royal Meteorological Society, ISSN 0035-9009, E-ISSN 1477-870XArticle in journal (Refereed)
  • 26.
    Bojarova, Jelena
    et al.
    SMHI, Research Department, Meteorology.
    Gustafsson, Nils
    SMHI, Research Department, Meteorology.
    Relevance of climatological background error statistics for mesoscale data assimilation2019In: Tellus. Series A, Dynamic meteorology and oceanography, ISSN 0280-6495, E-ISSN 1600-0870, Vol. 71, no 1, article id 1615168Article in journal (Refereed)
  • 27. Bloeschl, Guenter
    et al.
    Hall, Julia
    Viglione, Alberto
    Perdigao, Rui A. P.
    Parajka, Juraj
    Merz, Bruno
    Lun, David
    Arheimer, Berit
    SMHI, Research Department, Hydrology.
    Aronica, Giuseppe T.
    Bilibashi, Ardian
    Bohac, Milon
    Bonacci, Ognjen
    Borga, Marco
    Canjevac, Ivan
    Castellarin, Attilio
    Chirico, Giovanni B.
    Claps, Pierluigi
    Frolova, Natalia
    Ganora, Daniele
    Gorbachova, Liudmyla
    Gul, Ali
    Hannaford, Jamie
    Harrigan, Shaun
    Kireeva, Maria
    Kiss, Andrea
    Kjeldsen, Thomas R.
    Kohnova, Silvia
    Koskela, Jarkko J.
    Ledvinka, Ondrej
    Macdonald, Neil
    Mavrova-Guirguinova, Maria
    Mediero, Luis
    Merz, Ralf
    Molnar, Peter
    Montanari, Alberto
    Murphy, Conor
    Osuch, Marzena
    Ovcharuk, Valeryia
    Radevski, Ivan
    Salinas, Jose L.
    Sauquet, Eric
    Sraj, Mojca
    Szolgay, Jan
    Volpi, Elena
    Wilson, Donna
    Zaimi, Klodian
    Zivkovic, Nenad
    Changing climate both increases and decreases European river floods2019In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 573, no 7772, p. 108-+Article in journal (Refereed)
    Abstract [en]

    Climate change has led to concerns about increasing river floods resulting from the greater water-holding capacity of a warmer atmosphere(1). These concerns are reinforced by evidence of increasing economic losses associated with flooding in many parts of the world, including Europe(2). Any changes in river floods would have lasting implications for the design of flood protection measures and flood risk zoning. However, existing studies have been unable to identify a consistent continental-scale climatic-change signal in flood discharge observations in Europe(3), because of the limited spatial coverage and number of hydrometric stations. Here we demonstrate clear regional patterns of both increases and decreases in observed river flood discharges in the past five decades in Europe, which are manifestations of a changing climate. Our results-arising from the most complete database of European flooding so far-suggest that: increasing autumn and winter rainfall has resulted in increasing floods in northwestern Europe; decreasing precipitation and increasing evaporation have led to decreasing floods in medium and large catchments in southern Europe; and decreasing snow cover and snowmelt, resulting from warmer temperatures, have led to decreasing floods in eastern Europe. Regional flood discharge trends in Europe range from an increase of about 11 per cent per decade to a decrease of 23 per cent. Notwithstanding the spatial and temporal heterogeneity of the observational record, the flood changes identified here are broadly consistent with climate model projections for the next century(4,5), suggesting that climate-driven changes are already happening and supporting calls for the consideration of climate change in flood risk management.

  • 28. Mazur, Aleksandra K.
    et al.
    Wahlin, Anna K.
    Kalen, Ola
    SMHI, Core Services.
    The life cycle of small- to medium-sized icebergs in the Amundsen Sea Embayment2019In: Polar Research, ISSN 0800-0395, E-ISSN 1751-8369, Vol. 38, article id 3313Article in journal (Refereed)
  • 29.
    Koenigk, Torben
    et al.
    SMHI, Research Department, Climate research - Rossby Centre.
    Fuentes Franco, Ramon
    SMHI, Research Department, Climate research - Rossby Centre.
    Towards normal Siberian winter temperatures?2019In: International Journal of Climatology, ISSN 0899-8418, E-ISSN 1097-0088, Vol. 39, no 11, p. 4567-4574Article in journal (Refereed)
  • 30. Nilsson, E.
    et al.
    Li, K.
    Fridlund, J.
    Sulcius, S.
    Bunse, C.
    Karlsson, C. M. G.
    Lindh, Markus
    SMHI, Core Services.
    Lundin, D.
    Pinhassi, J.
    Holmfeldt, K.
    Genomic and Seasonal Variations among Aquatic Phages Infecting the Baltic Sea Gammaproteobacterium Rheinheimera sp. Strain BAL3412019In: Applied and Environmental Microbiology, ISSN 0099-2240, E-ISSN 1098-5336, Vol. 85, no 18, article id e01003-19Article in journal (Refereed)
  • 31.
    Thomas, Manu
    et al.
    SMHI, Research Department, Air quality.
    Devasthale, Abhay
    SMHI, Research Department, Atmospheric remote sensing.
    L'Ecuyer, Tristan
    Wang, Shiyu
    SMHI, Research Department, Climate research - Rossby Centre.
    Koenigk, Torben
    SMHI, Research Department, Climate research - Rossby Centre.
    Wyser, Klaus
    SMHI, Research Department, Climate research - Rossby Centre.
    Snowfall distribution and its response to the Arctic Oscillation: an evaluation of HighResMIP models in the Arctic using CPR/CloudSat observations2019In: Geoscientific Model Development, ISSN 1991-959X, E-ISSN 1991-9603, Vol. 12, no 8, p. 3759-3772Article in journal (Refereed)
  • 32. Browny, Nicola Jane
    et al.
    Nilsson, Johan
    Pemberton, Per
    SMHI, Research Department, Oceanography.
    Arctic Ocean Freshwater Dynamics: Transient Response to Increasing River Runoff and Precipitation2019In: Journal of Geophysical Research - Oceans, ISSN 2169-9275, E-ISSN 2169-9291, Vol. 124, no 7, p. 5205-5219Article in journal (Refereed)
  • 33. Samson, Roeland
    et al.
    Moretti, Marco
    Amorim, Jorge Humberto
    SMHI, Research Department, Air quality.
    Branquinho, Cristina
    Fares, Silvano
    Morelli, Federico
    Niinemets, Ülo
    Paolett, Elena
    Pinho, Pedro
    Sgrigna, Gregorio
    Stojanovski, Vladimir
    Tiwary, Abhishek
    Sicard, Pierre
    Calfapietra, Carlo
    Towards an integrative approach to evaluate the environmental ecosystem services provided by urban forest2019In: Journal of Forestry Research, ISSN 1007-662X, E-ISSN 1993-0607, p. 1-16Article in journal (Refereed)
  • 34. Grahn, T.
    et al.
    Olsson, Jonas
    SMHI, Research Department, Hydrology.
    Insured flood damage in Sweden, 1987-20132019In: Journal of Flood Risk Management, ISSN 1753-318X, E-ISSN 1753-318X, Vol. 12, no 3, article id UNSP e12465Article in journal (Refereed)
  • 35. Teixeira, J. C.
    et al.
    Fallmann, J.
    Carvalho, Ana
    SMHI, Research Department, Air quality.
    Rocha, A.
    Surface to boundary layer coupling in the urban area of Lisbon comparing different urban canopy models in WRF2019In: Urban Climate, ISSN 2212-0955, E-ISSN 2212-0955, Vol. 28, article id UNSP 100454Article in journal (Refereed)
  • 36.
    Fuentes Franco, Ramon
    et al.
    SMHI, Research Department, Climate research - Rossby Centre.
    Koenigk, Torben
    SMHI, Research Department, Climate research - Rossby Centre.
    Sensitivity of the Arctic freshwater content and transport to model resolution2019In: Climate Dynamics, ISSN 0930-7575, E-ISSN 1432-0894, Vol. 53, no 3-4, p. 1765-1781Article in journal (Refereed)
  • 37. Kniebusch, Madline
    et al.
    Meier, Markus
    SMHI, Research Department, Oceanography.
    Neumann, Thomas
    Borgel, Florian
    Temperature Variability of the Baltic Sea Since 1850 and Attribution to Atmospheric Forcing Variables2019In: Journal of Geophysical Research - Oceans, ISSN 2169-9275, E-ISSN 2169-9291, Vol. 124, no 6, p. 4168-4187Article in journal (Refereed)
  • 38. Tamoffo, Alain T.
    et al.
    Moufouma-Okia, Wilfran
    Dosio, Alessandro
    James, Rachel
    Pokam, Wilfried M.
    Vondou, Derbetini A.
    Fotso-Nguemo, Thierry C.
    Guenang, Guy Merlin
    Kamsu-Tamo, Pierre H.
    Nikulin, Grigory
    SMHI, Research Department, Climate research - Rossby Centre.
    Longandjo, Georges-Noel
    Lennard, Christopher J.
    Bell, Jean-Pierre
    Takong, Roland R.
    Haensler, Andreas
    Tchotchou, Lucie A. Djiotang
    Nouayou, Robert
    Process-oriented assessment of RCA4 regional climate model projections over the Congo Basin under 1.5. C and 2. C global warming levels: influence of regional moisture fluxes2019In: Climate Dynamics, ISSN 0930-7575, E-ISSN 1432-0894, Vol. 53, no 3-4, p. 1911-1935Article in journal (Refereed)
  • 39.
    Eliasson, Salomon
    et al.
    SMHI, Research Department, Atmospheric remote sensing.
    Karlsson, Karl-Göran
    SMHI, Research Department, Atmospheric remote sensing.
    van Meijgaard, Erik
    Meirink, Jan Fokke
    Stengel, Martin
    Willén, Ulrika
    SMHI, Research Department, Climate research - Rossby Centre.
    The Cloud_cci simulator v1.0 for the Cloud_cci climate data record and its application to a global and a regional climate model2019In: Geoscientific Model Development, ISSN 1991-959X, E-ISSN 1991-9603, Vol. 12, no 2, p. 829-847Article in journal (Refereed)
  • 40.
    Johansson, Erik
    et al.
    SMHI, Research Department, Atmospheric remote sensing.
    Devasthale, Abhay
    SMHI, Research Department, Atmospheric remote sensing.
    Ekman, Nnica M. L.
    Tjernstrom, Michael
    L'Ecuye, Ristan
    How Does Cloud Overlap Affect the Radiative Heating in the Tropical Upper Troposphere/Lower Stratosphere?2019In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 46, no 10, p. 5623-5631Article in journal (Refereed)
  • 41. Lewinschal, Anna
    et al.
    Ekman, Annica M. L.
    Hansson, Hans-Christen
    Sand, Maria
    Berntsen, Terje K.
    Langner, Joakim
    SMHI, Research Department, Air quality.
    Local and remote temperature response of regional SO2 emissions2019In: Atmospheric Chemistry And Physics, ISSN 1680-7316, E-ISSN 1680-7324, Vol. 19, no 4, p. 2385-2403Article in journal (Refereed)
  • 42. Prevett, Andrew
    et al.
    Lindstrom, Jenny
    Xu, Jiayi
    Karlson, Bengt
    SMHI, Research Department, Oceanography.
    Selander, Erik
    Grazer-induced bioluminescence gives dinoflagellates a competitive edge2019In: Current Biology, ISSN 0960-9822, E-ISSN 1879-0445, Vol. 29, no 12, p. R564-R565Article in journal (Refereed)
  • 43. Gutierrez, J. M.
    et al.
    Maraun, D.
    Widmann, M.
    Huth, R.
    Hertig, E.
    Benestad, R.
    Roessler, O.
    Wibig, J.
    Wilcke, Renate
    SMHI, Research Department, Climate research - Rossby Centre.
    Kotlarski, S.
    San Martin, D.
    Herrera, S.
    Bedia, J.
    Casanueva, A.
    Manzanas, R.
    Iturbide, M.
    Vrac, M.
    Dubrovsky, M.
    Ribalaygua, J.
    Portoles, J.
    Raty, O.
    Raisanen, J.
    Hingray, B.
    Raynaud, D.
    Casado, M. J.
    Ramos, P.
    Zerenner, T.
    Turco, M.
    Bosshard, Thomas
    SMHI, Research Department, Hydrology.
    Stepanek, P.
    Bartholy, J.
    Pongracz, R.
    Keller, D. E.
    Fischer, A. M.
    Cardoso, R. M.
    Soares, P. M. M.
    Czernecki, B.
    Page, C.
    An intercomparison of a large ensemble of statistical downscaling methods over Europe: Results from the VALUE perfect predictor cross-validation experiment2019In: International Journal of Climatology, ISSN 0899-8418, E-ISSN 1097-0088, Vol. 39, no 9, p. 3750-3785Article in journal (Refereed)
  • 44. Martin Miguez, Belen
    et al.
    Novellino, Antonio
    Vinci, Matteo
    Claus, Simon
    Calewaert, Jan-Bart
    Vallius, Henry
    Schmitt, Thierry
    Pititto, Alessandro
    Giorgetti, Alessandra
    Askew, Natalie
    Iona, Sissy
    Schaap, Dick
    Pinardi, Nadia
    Harpham, Quillon
    Kater, Belinda J.
    Populus, Jacques
    She, Jun
    Palazov, Atanas Vasilev
    McMeel, Oonagh
    Oset, Paula
    Lear, Dan
    Manzella, Giuseppe M. R.
    Gorringe, Patrick
    SMHI, Core Services.
    Simoncelli, Simona
    Larkin, Kate
    Holdsworth, Neil
    Arvanitidis, Christos Dimitrios
    Jack, Maria Eugenia Molina
    Montero, Maria del Mar Chaves
    Herman, Peter M. J.
    Hernandez, Francisco
    The European Marine Observation and Data Network (EMODnet): Visions and Roles of the Gateway to Marine Data in Europe2019In: Frontiers in Marine Science, E-ISSN 2296-7745, Vol. 6, article id UNSP 313Article in journal (Refereed)
  • 45. Tuomi, Laura
    et al.
    Kanarik, Hedi
    Bjorkqvist, Jan-Victor
    Marjamaa, Riikka
    Vainio, Jouni
    Hordoir, Robinson
    SMHI, Research Department, Oceanography.
    Höglund, Anders
    SMHI, Research Department, Oceanography.
    Kahma, Kimmo K.
    Impact of Ice Data Quality and Treatment on Wave Hindcast Statistics in Seasonally Ice-Covered Seas2019In: Frontiers in Earth Science, ISSN 2296-6463, Vol. 7, article id UNSP 166Article in journal (Refereed)
  • 46. Orru, Hans
    et al.
    Astrom, Christofer
    Andersson, Camilla
    SMHI, Research Department, Air quality.
    Tamm, Tanel
    Ebi, Kristie L.
    Forsberg, Bertil
    Ozone and heat-related mortality in Europe in 2050 significantly affected by changes in climate, population and greenhouse gas emission2019In: Environmental Research Letters, ISSN 1748-9326, E-ISSN 1748-9326, Vol. 14, no 7, article id 074013Article in journal (Refereed)
  • 47. Kalantari, Zahra
    et al.
    Santos Ferreira, Carla Sofia
    Page, Jessica
    Goldenberg, Romain
    Olsson, Jonas
    SMHI, Research Department, Hydrology.
    Destouni, Georgia
    Meeting sustainable development challenges in growing cities: Coupled social-ecological systems modeling of land use and water changes2019In: Journal of Environmental Management, ISSN 0301-4797, E-ISSN 1095-8630, Vol. 245, p. 471-480Article in journal (Refereed)
  • 48. Jenkin, M. E.
    et al.
    Khan, M. A. H.
    Shallcross, D. E.
    Bergström, Robert
    SMHI, Research Department, Air quality.
    Simpson, D.
    Murphy, K. L. C.
    Rickard, A. R.
    The CRI v2.2 reduced degradation scheme for isoprene2019In: Atmospheric Environment, ISSN 1352-2310, E-ISSN 1873-2844, Vol. 212, p. 172-182Article in journal (Refereed)
  • 49. Mota, Fernando de Brito
    et al.
    Rivelino, Roberto
    Medeiros, Paulo V. C.
    Medeiros, Paulo
    SMHI, Research Department, Meteorology.
    A critical assessment on the electron transport through dehydrogenated intrinsically conducting channels in graphane-graphene hybrids2019In: MATERIALS RESEARCH EXPRESS, ISSN 2053-1591, Vol. 6, no 8, article id 085618Article in journal (Refereed)
  • 50.
    Meier, Markus
    et al.
    SMHI, Research Department, Oceanography.
    Eilola, Kari
    SMHI, Research Department, Oceanography.
    Almroth-Rosell, Elin
    SMHI, Research Department, Oceanography.
    Schimanke, Semjon
    SMHI, Research Department, Oceanography.
    Kniebusch, M.
    Höglund, Anders
    SMHI, Research Department, Oceanography.
    Pemberton, Per
    SMHI, Research Department, Oceanography.
    Liu, Ye
    SMHI, Research Department, Oceanography.
    Väli, Germo
    SMHI, Research Department, Oceanography.
    Saraiva, S.
    Disentangling the impact of nutrient load and climate changes on Baltic Sea hypoxia and eutrophication since 18502019In: Climate Dynamics, ISSN 0930-7575, E-ISSN 1432-0894, Vol. 53, no 1-2, p. 1145-1166Article in journal (Refereed)
1234567 1 - 50 of 1388
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.8
|