Change search
Refine search result
1 - 11 of 11
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Hall, Per O. J.
    et al.
    Almroth-Rosell, Elin
    SMHI, Research Department, Oceanography.
    Bonaglia, Stefano
    Dale, Andrew W.
    Hylén, Astrid
    Kononets, Mikhail
    Nilsson, Madeleine
    Sommer, Stefan
    van de Velde, Sebastiaan
    Viktorsson, Lena
    SMHI, Core Services.
    Influence of Natural Oxygenation of Baltic Proper Deep Water on Benthic Recycling and Removal of Phosphorus, Nitrogen, Silicon and Carbon2017In: Frontiers in Marine Science, ISSN 2296-7745, Vol. 4, no 27Article in journal (Refereed)
  • 2.
    Hansson, Martin
    et al.
    SMHI, Core Services.
    Viktorsson, Lena
    SMHI, Core Services.
    Andersson, Lars
    SMHI, Core Services.
    Oxygen Survey in the Baltic Sea 2017 - Extent of Anoxia and Hypoxia, 1960-20172018Report (Other academic)
    Abstract [en]

    A climatological atlas of the oxygen situation in the deep water of the Baltic Sea was firstpublished in 2011 in SMHI Report Oceanography No 42. Since 2011, annual updates have beenmade as additional data have been reported to ICES. In this report the results for 2016 havebeen updated and the preliminary results for 2017 are presented. Oxygen data from 2017 havebeen collected during the annual Baltic International Acoustic Survey (BIAS) and from nationalmonitoring programmes with contributions from Sweden, Finland and Poland.For the autumn period each profile in the dataset was examined for the occurrence of hypoxia(oxygen deficiency) and anoxia (total absence of oxygen). The depths of onset of hypoxia andanoxia were then interpolated between sampling stations producing two surfaces representingthe depth at which hypoxic and anoxic conditions respectively are found. The volume and areaof hypoxia and anoxia have been calculated and the results have then been transformed to mapsand diagrams to visualize the annual autumn oxygen situation during the analysed period.The updated results for 2016 and the preliminary results for 2017 show that the severe oxygenconditions in the Baltic Proper after the regime shift in 1999 continue. Both the areal extent andthe volume with anoxic conditions have, after 1999, been constantly elevated to levels onlyobserved occasionally before the regime shift. Despite the frequent inflows to the Baltic Seaduring the period 2014-2016 approximately 18% of the bottom area was affected by anoxia and28% by hypoxia during 2017. The hydrogen sulphide has, due to the inflows, disappeared fromthe Eastern and Northern Gotland Basin. However, the oxygen concentrations in the deep waterare still near zero and signs of increasing hydrogen sulphide close to the bottom have beenobserved during 2017.Sammanfattning

  • 3.
    Hansson, Martin
    et al.
    SMHI, Core Services.
    Viktorsson, Lena
    SMHI, Core Services.
    Andersson, Lars
    SMHI, Core Services.
    Oxygen Survey in the Baltic Sea 2018 - Extent of Anoxia and Hypoxia, 1960-20182018Report (Other academic)
    Abstract [en]

    A climatological atlas of the oxygen situation in the deep water of the Baltic Sea was first published in 2011 in SMHI Report Oceanography No 42. Since 2011, annual updates have been made as additional data have been reported to the ICES data center. In this report the results for 2017 has been updated and the preliminary results for 2018 are presented. Oxygen data from 2018 have been collected from various sources such as international trawl survey, national monitoring programmes and research projects with contributions from Poland, Estonia, Latvia, Russia, Denmark, Sweden and Finland. For the autumn period each profile in the dataset was examined for the occurrence of hypoxia (oxygen deficiency) and anoxia (total absence of oxygen). The depths of onset of hypoxia and anoxia were then interpolated between sampling stations producing two surfaces representing the depth at which hypoxic and anoxic conditions respectively are found. The volume and area of hypoxia and anoxia have been calculated and the results have then been transferred to maps and diagrams to visualize the annual autumn oxygen situation during the analysed period. The updated results for 2017 and the preliminary results for 2018 show that the severe oxygen conditions in the Baltic Proper after the regime shift in 1999 continue. Both the areal extent and the volume with anoxic conditions have, after 1999, been constantly elevated to levels only observed occasionally before the regime shift. Despite the frequent inflows to the Baltic Sea during the period 2014-2016 approximately 22% of the bottom area was affected by anoxia and 32% by hypoxia during 2018. The preliminary results indicate that this is the largest area affected by anoxia during the analysed period, starting 1960. The hydrogen sulphide that had disappeared from the Eastern and Northern Gotland Basin due to the inflows in 2014-2016 is now steadily increasing in the deep water again.

  • 4. Liblik, Taavi
    et al.
    Naumann, Michael
    Alenius, Pekka
    Hansson, Martin
    SMHI, Core Services.
    Lips, Urmas
    Nausch, Gunther
    Tuomi, Laura
    Wesslander, Karin
    SMHI, Core Services.
    Laanemets, Jaan
    Viktorsson, Lena
    SMHI, Core Services.
    Propagation of Impact of the Recent Major Baltic Inflows From the Eastern Gotland Basin to the Gulf of Finland2018In: Frontiers in Marine Science, E-ISSN 2296-7745, Vol. 5, article id UNSP 222Article in journal (Refereed)
  • 5. Nilsson, Madeleine M.
    et al.
    Kononets, M.
    Ekeroth, N.
    Viktorsson, Lena
    SMHI, Core Services.
    Hylen, A.
    Sommer, S.
    Pfannkuche, O.
    Almroth-Rosell, Elin
    SMHI, Research Department, Oceanography.
    Atamanchuk, D.
    Andersson, J. H.
    Roos, P.
    Tengberg, A.
    Hall, Per O. J.
    Organic carbon recycling in Baltic Sea sediments - An integrated estimate on the system scale based on in situ measurements2019In: Marine Chemistry, ISSN 0304-4203, E-ISSN 1872-7581, Vol. 209, p. 81-93Article in journal (Refereed)
  • 6.
    Viktorsson, Lena
    et al.
    SMHI, Core Services.
    Wesslander, Karin
    SMHI, Core Services.
    Revidering av fysikaliska och kemiskabedömningsgrunder i kustvatten: Underlag inför uppdatering av HVMFS 2013:192018Report (Other academic)
    Abstract [sv]

    Detta är ett underlag för revidering av bilaga 5 i HVMFS 2013:19, Bedömningsgrunder för fysikaliskkemiskakvalitetsfaktorer i kustvatten och vatten i övergångszonen. Underlaget innefattar främst enuppdatering av referensvärden för näringsämnen samt förslag på uppdatering av viss text i föreskriftengällande syrebalans och siktdjup. Den generella metoden för var och en av stödparametrarna ibedömningsgrunderna bibehålls. I rapportens sista kapitel presenteras de uppdateringar av föreskriftenHVMFS 2013:19 som rekommenderas utifrån detta uppdrag.Efter en jämförelse av tidigare framtagna referensvärden för näringsämnen och de som tagits fram iden här rapporten rekommenderas att nya referensvärden i tillrinnande sötvatten används men atttidigare referensvärden för TN och TP vid utsjösalthalt samt att klassgränser behålls. En mindrejustering av referensvärden för DIN och DIP utifrån havsmiljöförordningens G/M värden föreslåsdock. De nya referensvärdena är framtagna med modellen S-HYPE (Lindström m.fl. 2010) förtillrinnande sötvatten och utifrån utsjövärden för oorganiskt fosfor och kväve (HVMFS 2012:18) samteffektsamband i mätdata. Det förtydligas också att ett konstant referensvärde för näringsämnenanvänds vid salthalter ≤2 psu.Den S-HYPE körning som använts för referensvärden i tillrinnande sötvatten är en bakgrundskörningsom är anpassad till definitionen av bakgrundsbelastning i PLC6 (Pollution Load Compilation 6,HELCOM).Utöver uppdatering av referensvärden för näringsämnen så föreslås en förändrad sammanvägning avkväve och fosfor i bedömningsgrunden. Det innebär att de ingående parametrarna för kväve och fosforsammanvägs var för sig. Bedömningsgrunderna ger då en separat status för varje näringsämne (kväveoch fosfor) baserat på de ingående parametrarna. Detta ger både en större möjlighet till att se vilketnäringsämne som bidrar till att eventuellt sänka status och stämmer överens med hur rapporteringentill EU-kommissionen ska ske.För syre rekommenderas en uppdatering om vilka mätmetoder som får användas, så att ävenmätningar med sensorer kan användas för statusbedömning. För siktdjup var ambitionen att ta fram etthumusgränsvärde för när kvalitetsfaktorn inte ska tillämpas. En fullständig statistisk analys har intehunnits med och en tydlig rekommendation kan inte ges.Det har under arbetet med att ta fram nya referensvärden för näringsämnen enligt nuvarande metodblivit tydligt att metoden för att bedöma näringsämnen behöver en mer övergripande uppdatering. Tillexempel kan metoden för salthaltskorrektion troligen förbättras med hjälp av en analys av mätdata ikombination med kustzonsmodellen.

  • 7. von Schuckmann, Karina
    et al.
    Le Traon, Pierre-Yves
    Alvarez-Fanjul, Enrique
    Axell, Lars
    SMHI, Research Department, Oceanography.
    Balmaseda, Magdalena
    Breivik, Lars-Anders
    Brewin, Robert J. W.
    Bricaud, Clement
    Drevillon, Marie
    Drillet, Yann
    Dubois, Clotilde
    Embury, Owen
    Etienne, Hélène
    Sotillo, Marcos García
    Garric, Gilles
    Gasparin, Florent
    Gutknecht, Elodie
    Guinehut, Stéphanie
    Hernandez, Fabrice
    Juza,, Melanie
    Karlson, Bengt
    SMHI, Research Department, Oceanography.
    Korres, Gerasimos
    Legeais, Jean-François
    Levier, Bruno
    Lien, Vidar S.
    Morrow, Rosemary
    Notarstefano, Giulio
    Parent, Laurent
    Pascual, Álvaro
    PérezGómez, Begoña
    Perruche, Coralie
    Pinardi, Nadia
    Pisano, Andrea
    Poulain, Pierre-Marie
    Pujol, Isabelle M.
    Raj, Roshin P.
    Raudsepp, Urmas
    Roquet, Hervé
    Samuelsen, Annette
    Sathyendranath, Shubha
    She, Jun
    Simoncelli, Simona
    Cosimo, Solidoro
    Tinker, Jonathan
    Tintoré, Joaquín
    Viktorsson, Lena
    SMHI, Core Services.
    Ablain, Michael
    Almroth-Rosell, Elin
    SMHI, Research Department, Oceanography.
    Bonaduce, Antonio
    Clementi, Emanuela
    Cossarini, Gianpiero
    Dagneaux, Quentin
    Desportes, Charles
    Dye, Stephen
    Fratianni, Claudia
    Good, Simon
    Greiner, Eric
    Gourrion, Jerome
    Hamon, Mathieu
    Holt, Jason
    Hyder, Pat
    Kennedy, John
    ManzanoMuñoz, Fernando
    Melet, Angélique
    Meyssignac, Benoit
    Mulet, Sandrine
    Buongiorno Nardelli, Bruno
    O´Dea, Enda
    Olason, Einar
    Paulmier, Aurélien
    Pérez-González, Irene
    Reid, Rebecca
    Racault, Marie-Fanny
    Raitsos, Dionysios E.
    Ramos,, Antonio
    Sykes, Peter
    Szekely, Tanguy
    Verbrugge, Nathalie
    The Copernicus Marine Environment Monitoring Service Ocean State Report2017In: Journal of operational oceanography. Publisher: The Institute of Marine Engineering, Science & Technology, ISSN 1755-876X, E-ISSN 1755-8778, Vol. 9, no Sup.2, p. 235-320Article in journal (Refereed)
  • 8.
    Wesslander, Karin
    et al.
    SMHI, Core Services.
    Viktorsson, Lena
    SMHI, Core Services.
    Summary of the Swedish National Marine Monitoring 2016 - Hydrography, nutrients and phytoplankton2017Report (Other academic)
    Abstract [en]

    Results from the Swedish national marine monitoring in the pelagic during 2016 are presented. The institutes who conduct the national monitoring are SMHI (Swedish meteorological and hydrological institute), SU (Stockholm University) and UMF (Umeå marine sciences centre). The presented parameters in this report are; salinity, temperature, oxygen, dissolved inorganic phosphorous, total phosphorous, dissolved inorganic nitrogen, total nitrogen, dissolved silica, chlorophyll and phytoplankton. Secchi depth, zooplankton, humus, primary production, pH and alkalinity are also measured but not presented. Seasonal plots for surface waters are presented in Appendix I.  Time series for surface waters (0-10 m) and bottom waters are presented in Appendix II. The amount of nutrients in the sub-basins of the Baltic Sea is presented per season and year in Appendix III.Exceptional events 2016 

    • A warm September due to several high pressure systems, with temperatures more than one standard deviation above mean in almost all stations from Skagerrak, Kattegat and the Baltic Proper.
    • Low oxygen in Kattegat bottom water during autumn as can be seen in the seasonal plots for both Anholt E and Fladen.
    • Improved oxygen condition in the East Gotland Basin, due to an increased frequency of deep water inflows in comparison to the period 1983 until the large inflow in December 2014. The inflow of 30 km3 in the beginning of the year could be tracked in the deep water in the Eastern Gotland Basin in June.
    •  Elevated levels of silicate have been observed in the Baltic Sea since 2014 and the silicate levels were also elevated this year but mainly in the central and the northern parts of the Baltic Proper.
    • In July there were high cell numbers of the dinoflagellate Dinophysis acuminata, which caused high levels of toxins in blue mussels. During this period it was forbidden to harvest blue mussels along the Bohus coast.
    • Unusual long period of cyanobacteria bloom in the Baltic Sea.
  • 9.
    Wesslander, Karin
    et al.
    SMHI, Core Services.
    Viktorsson, Lena
    SMHI, Core Services.
    Fölster, Jens
    Drakare, Stina
    Sonesten, Lars
    Förslag till plan för revidering av fysikalisk-kemiska bedömningsgrunder för ekologisk status i sjöar, vattendrag och kustvatten Del A: SJÖAR OCH VATTENDRAG (SLU) Del B: KUSTVATTEN (SMHI)2017Report (Other academic)
  • 10.
    Wesslander, Karin
    et al.
    SMHI, Core Services.
    Viktorsson, Lena
    SMHI, Core Services.
    Skjevik, Ann-Turi
    SMHI, Core Services.
    The Swedish National Marine Monitoring Programme 2018. Hydrography Nutrients Phytoplankton2019Report (Other academic)
    Abstract [en]

    This report presents the main results of the Swedish national marine monitoring programme of thepelagic during 2018. The monitoring data of hydrography, nutrients and phytoplankton are analysedfor the seas surrounding Sweden: the Skagerrak, the Kattegat, the Sound, the Baltic Proper, theBothnian Sea and the Bothnian Bay.The national environmental monitoring of the pelagic is carried out by SMHI (SwedishMeteorological and Hydrological Institute), Stockholm University and UMF (Umeå Marine SciencesCentre). Data is collected, analysed and reported with support from Swedish environmentalmonitoring and on behalf of by SwAM (Swedish Agency for Marine and Water Management). TheSMHI monitoring is made in cooperation between the national environmental monitoring of thepelagic and the SMHI oceanographic sampling programme for the seas surrounding Sweden and is cofinancedby SwAM and SMHI. This annual summary of the national monitoring is made by SMHI andis financed by the contract between SwAM and SMHI.The weather in 2018 was characterized by high air temperatures and a few storms that impliedconsequences for the state in the sea. The spring arrived quickly and the sea surface temperatureincreased rapidly from April to May. In August and September two storms, named Johanne and Knud,passed the region and the surface layer was well-mixed at several stations. At the East coast upwellingevents were noted in both the Baltic Proper and the Bothnian Sea.During the year there were two small deep water inflows to the Baltic Proper that temporarilyimproved the oxygen condition in the southern parts. No improvements of the oxygen condition wereseen in the Eastern and Western Gotland Basins, instead the amount of hydrogen sulphide increased inthese basins during the year.The spring bloom had arrived in the Skagerrak and the Kattegat in March and concentrations ofdissolved inorganic phosphorus (DIP) and dissolved inorganic nitrogen (DIN) were close to or at thedetection limit from April to September. In the Skagerrak and the Kattegat the spring bloom wasdominated by the diatom Skeletonema marinoi. In the Baltic Proper the spring bloom was observed amonth later, in April. The extensive cyanobacteria bloom in the Baltic Proper started already in Mayand during the late September cruise cyanobacteria were still abundant. The dinoflagellateProrocentrum compressum was found in high cell numbers during the autumn at all stations on theWest coast. This flagellate has rarely been observed previously and although it is not harmful it isinteresting when species suddenly occur and stay for a longer period. The potentially harmful diatomgenus Pseudo-nitzschia bloomed in the beginning of December.Surface concentrations of DIP and DIN were mainly normal except from in the Skagerrak and theKattegat where concentrations were lower than usual in December. Concentrations of silicate wereabove normal levels before the spring bloom at most of the stations and in the Baltic Proper silicatewas also high in the autumn.In 2018 there were some difficulties with available research vessels for the planned cruises and somecruises needed to be cancelled with short notice. Many planned observations were therefore missed, inparticular during the summer period.

  • 11.
    Wesslander, Karin
    et al.
    SMHI, Core Services.
    Viktorsson, Lena
    SMHI, Core Services.
    Skjevik, Ann-Turi
    SMHI, Core Services.
    The SwedishNational MarineMonitoringProgramme 2017: HydrographyNutrientsPhytoplankton2018Report (Other academic)
    Abstract [en]

    This report presents the main results of the Swedish national marine monitoring programme of the pelagic during 2017. The monitoring data of hydrography, nutrients and phytoplankton are analysed for the seas surrounding Sweden: Skagerrak, Kattegat, The Sound, Baltic Proper, Bothnian Sea and Bothnian Bay. The monitoring is carried out by SMHI (Swedish Meteorological and Hydrological Institute), SU (Stockholm University) and UMF (Umeå Marine Sciences Centre) and the monitoring programme is co-funded by SwAM (Swedish Agency for Marine and Water Management), SMHI, SU and UMF. Data is collected, analysed and reported with support from Swedish environmental monitoring and commissioned by SwaM.

    The Baltic current along the Swedish west coast implies large variations in surface salinity and the unusually large outflow of brackish water from the Baltic Sea in 2017 was reflected as low surface salinity in Skagerrak and Kattegat in the beginning of the year. There were no major deep water inflows to the Baltic Sea during 2017 but a few inflows of minor magnitude. These minor inflows only temporarily improved the oxygen condition in the Bornholm Basin and in the southern part of the Eastern Gotland Basin.

    The salinity below the halocline was above normal in the Gotland Basins and in the Northern Baltic Proper, and also in the surface layer in the Eastern Gotland Basin for almost the whole year.

    In Skagerrak and Kattegat, surface concentrations of phosphate and dissolved inorganic nitrogen were normal while dissolved silica concentrations were elevated especially in spring. In the Baltic Sea, the concentration of silicate in the surface water was elevated in all basins. According to the estimated total content of silicate there has been an increase in silica content in the Baltic Sea since the early 1990’s. Surface concentrations of phosphate were above normal in the Gotland basins and the Northern Baltic Proper while inorganic nitrogen content was above normal in parts of the Arkona and Bornholm basins. During spring and summer, the inorganic nitrogen was consumed at greater depths than usual in the Baltic Proper. In particular concentrations of phosphate and dissolved silica were generally lower than normal in the bottom layer.

    Instead of diatoms, the flagellate genus Pseudochattonella, which is potentially toxic to fish, bloomed in the Kattegat and Skagerrak areas in February – April. During autumn there was a prolonged diatom bloom though. In the Baltic Sea spring bloom occurred in April. The cyanobacteria bloom began in May already with Aphanizomenon flos-aquae. During June and July all three of the filamentous cyanobacteria, A. flos-aquae, Dolichospermum lemmermannii and the potentially harmful Nodularia spumigena were found in the phytoplankton samples in various amounts.

    In the Bothnian Sea, the sea surface temperature during summer was lower than normal and the oxygen conditions in the bottom layer was not critical but still below normal levels.

1 - 11 of 11
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.8
|