Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Danielsson, A.
    et al.
    Jönsson, Anette
    SMHI, Core Services.
    Rahm, Lars
    SMHI, Research Department, Oceanography.
    Resuspension patterns in the Baltic proper2007In: Journal of Sea Research, ISSN 1385-1101, E-ISSN 1873-1414, Vol. 57, no 4, p. 257-269Article in journal (Refereed)
    Abstract [en]

    Waves induce resuspension of surface sediments and contribute to the long-term mobilisation of particulate matter from erosion to accumulation bottoms. This has a major impact on the nutrient cycle in shallow seas by enhancing degradation, microbial production and recycling. The Baltic Sea represents such an area. The aim of this work is to analyse the spatial and temporal resuspension patterns in the Baltic Sea. To estimate the bottom friction velocity, modelled wave data are used in combination with data on grain size. This new data set is compared to a resuspension threshold of friction velocity to estimate the events of resuspension. The variation in bottom friction velocity, resuspension frequency and duration are related to wind climate, fetch, water depth and sediment type. Substantial resuspension can be found down to 40-60 m, with durations from one day to as much as two weeks. The highest winds in the area are highly anisotropic with a dominance of S-SW-W winds and the highest resuspension frequencies are found along the shallow eastern coasts. A seasonal pattern is observed with relatively high friction velocities and high resuspension frequencies during winter. There is also a variation depending on grain size, where sediments with fine and medium sand have a considerably higher percentage of resuspension events than bottoms with other dominant grain sizes. Five sub-areas are identified, characterised by different sediment types, resuspension and wind characteristics. If, in the future, wind speed increases as predicted, resuspension of sediments will also increase with effects on the nutrient cycle. (c) 2006 Elsevier B.V. All rights reserved.

  • 2.
    Hordoir, Robinson
    et al.
    SMHI, Research Department, Oceanography.
    Axell, Lars
    SMHI, Research Department, Oceanography.
    Höglund, Anders
    SMHI, Research Department, Oceanography.
    Dieterich, Christian
    SMHI, Research Department, Oceanography.
    Fransner, Filippa
    Groger, Matthias
    SMHI, Research Department, Oceanography.
    Liu, Ye
    SMHI, Research Department, Oceanography.
    Pemberton, Per
    SMHI, Research Department, Oceanography.
    Schimanke, Semjon
    SMHI, Research Department, Oceanography.
    Andersson, Helén
    SMHI, Research Department, Oceanography.
    Ljungemyr, Patrik
    SMHI, Core Services.
    Nygren, Petter
    SMHI, Core Services.
    Falahat, Saeed
    SMHI, Core Services.
    Nord, Adam
    SMHI, Core Services.
    Jönsson, Anette
    SMHI, Core Services.
    Lake, Irene
    SMHI, Core Services. SMHI, Research Department, Climate research - Rossby Centre.
    Doos, Kristofer
    Hieronymus, Magnus
    SMHI, Research Department, Oceanography.
    Dietze, Heiner
    Loeptien, Ulrike
    Kuznetsov, Ivan
    Westerlund, Antti
    Tuomi, Laura
    Haapala, Jari
    Nemo-Nordic 1.0: a NEMO-based ocean model for the Baltic and North seas - research and operational applications2019In: Geoscientific Model Development, ISSN 1991-959X, E-ISSN 1991-9603, Vol. 12, no 1, p. 363-386Article in journal (Refereed)
  • 3.
    Jönsson, Anette
    et al.
    SMHI, Core Services.
    Broman, Barry
    SMHI, Research Department, Climate research - Rossby Centre.
    Rahm, Lars
    SMHI, Research Department, Oceanography.
    Variations in the Baltic Sea wave fields2003In: Ocean Engineering, ISSN 0029-8018, E-ISSN 1873-5258, Vol. 30, no 1, p. 107-126Article in journal (Refereed)
    Abstract [en]

    The surface waves in the Baltic Sea are hindcast with the spectral wave model HYPAS during a 12-month period. The model results show a strong temporal and spatial variation in the wave field due to the physical dimensions of the different basins and the predominant wind field. The highest waves in the area are found in the outer part of Skagerrak, as well as in the central and southern parts of the Baltic Proper. To get significant waves above 6 m high, strong winds (15-20 m/s) must have been blowing for 6 to 24 h from a favourable direction over a deep area. (C) 2002 Elsevier Science Ltd. All rights reserved.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.7
|