Endre søk
Begrens søket
1 - 9 of 9
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Axe, Philip
    et al.
    SMHI, Forskningsavdelningen, Oceanografi.
    Wesslander, Karin
    SMHI, Samhälle och säkerhet.
    Kronsell, Johan
    SMHI, Samhälle och säkerhet.
    Confidence rating for OSPAR COMP2012Rapport (Annet vitenskapelig)
    Abstract [sv]

    Medlemsländerna inom EU har undertecknat Havsmiljödirektivet samt Ramdirektivet för Vatten och har därmed förpliktat sig att uppnå ”God” eller ”God miljö-” status inom sina marina miljöer inom en viss tid, eller ta fram åtgärder. Det finns därför ett behov att utvärdera mätprogrammen som levererar data till sådana statusbedömningar, som en del av konfidensbedömningen av hela statusbedömningen. Inom OSPAR Konventionen för Skyddet av Nordost Atlanten, har Tyskland och Nederländerna presenterat ett förslag för hur man skulle kunna utföra en sådan utvärdering. Den här rapporten beskriver resultat när metoden användes med svenska data från Västerhavet (inklusive Öresund, som möjligtvis ska ingå i Större Nordsjöns region under Marina Strategin). Övergödningsvariablernas salthaltsvariation undersöktes. I Kattegatt var den oorganiska närsaltsvariabiliteten minst vid den högsta salthalten, detta tyder på att en pålitlig bedömning av övergödning kan göras enklare med utsjödata än med data från den mer dynamiska kustzonen. När man tittar på mätprogrammets täckning, syns det att horisontala gradienter i bedömningsvariabler (ofta säsongsmedlen) varierar med mindre än 30 % mellan stationer. Detta visar på en rimlig täckning, även om flera stationer skulle förbättra programmet. Om man tittar på varje station för sig, är nuvarande provtagning i djupled tillräcklig, förutom för klorofyll a och oorganiska närsalter under växtsäsongen. Provtagningsfrekvensen räcker för totala närsaltshalter, men är inte tillräcklig för oorganiska närsalter samt, i Öresund, för koncentrationen av syre i djupvattnet. Den otillräckliga provtagningen av klorofyll a och oorganiska närsalter kan förbättras ganska enkelt om en autoanalysator med två kanaler (nitrit + nitrat, samt ortofosfat) monteras på de nuvarande ferryboxsystem som används. Alternativet att använda bojar och traditionella mätplattformar skulle vara dyrare.

  • 2. Liblik, Taavi
    et al.
    Naumann, Michael
    Alenius, Pekka
    Hansson, Martin
    SMHI, Samhälle och säkerhet.
    Lips, Urmas
    Nausch, Gunther
    Tuomi, Laura
    Wesslander, Karin
    SMHI, Samhälle och säkerhet.
    Laanemets, Jaan
    Viktorsson, Lena
    SMHI, Samhälle och säkerhet.
    Propagation of Impact of the Recent Major Baltic Inflows From the Eastern Gotland Basin to the Gulf of Finland2018Inngår i: Frontiers in Marine Science, E-ISSN 2296-7745, Vol. 5, artikkel-id UNSP 222Artikkel i tidsskrift (Fagfellevurdert)
  • 3.
    Viktorsson, Lena
    et al.
    SMHI, Samhälle och säkerhet.
    Wesslander, Karin
    SMHI, Samhälle och säkerhet.
    Revidering av fysikaliska och kemiskabedömningsgrunder i kustvatten: Underlag inför uppdatering av HVMFS 2013:192018Rapport (Annet vitenskapelig)
    Abstract [sv]

    Detta är ett underlag för revidering av bilaga 5 i HVMFS 2013:19, Bedömningsgrunder för fysikaliskkemiskakvalitetsfaktorer i kustvatten och vatten i övergångszonen. Underlaget innefattar främst enuppdatering av referensvärden för näringsämnen samt förslag på uppdatering av viss text i föreskriftengällande syrebalans och siktdjup. Den generella metoden för var och en av stödparametrarna ibedömningsgrunderna bibehålls. I rapportens sista kapitel presenteras de uppdateringar av föreskriftenHVMFS 2013:19 som rekommenderas utifrån detta uppdrag.Efter en jämförelse av tidigare framtagna referensvärden för näringsämnen och de som tagits fram iden här rapporten rekommenderas att nya referensvärden i tillrinnande sötvatten används men atttidigare referensvärden för TN och TP vid utsjösalthalt samt att klassgränser behålls. En mindrejustering av referensvärden för DIN och DIP utifrån havsmiljöförordningens G/M värden föreslåsdock. De nya referensvärdena är framtagna med modellen S-HYPE (Lindström m.fl. 2010) förtillrinnande sötvatten och utifrån utsjövärden för oorganiskt fosfor och kväve (HVMFS 2012:18) samteffektsamband i mätdata. Det förtydligas också att ett konstant referensvärde för näringsämnenanvänds vid salthalter ≤2 psu.Den S-HYPE körning som använts för referensvärden i tillrinnande sötvatten är en bakgrundskörningsom är anpassad till definitionen av bakgrundsbelastning i PLC6 (Pollution Load Compilation 6,HELCOM).Utöver uppdatering av referensvärden för näringsämnen så föreslås en förändrad sammanvägning avkväve och fosfor i bedömningsgrunden. Det innebär att de ingående parametrarna för kväve och fosforsammanvägs var för sig. Bedömningsgrunderna ger då en separat status för varje näringsämne (kväveoch fosfor) baserat på de ingående parametrarna. Detta ger både en större möjlighet till att se vilketnäringsämne som bidrar till att eventuellt sänka status och stämmer överens med hur rapporteringentill EU-kommissionen ska ske.För syre rekommenderas en uppdatering om vilka mätmetoder som får användas, så att ävenmätningar med sensorer kan användas för statusbedömning. För siktdjup var ambitionen att ta fram etthumusgränsvärde för när kvalitetsfaktorn inte ska tillämpas. En fullständig statistisk analys har intehunnits med och en tydlig rekommendation kan inte ges.Det har under arbetet med att ta fram nya referensvärden för näringsämnen enligt nuvarande metodblivit tydligt att metoden för att bedöma näringsämnen behöver en mer övergripande uppdatering. Tillexempel kan metoden för salthaltskorrektion troligen förbättras med hjälp av en analys av mätdata ikombination med kustzonsmodellen.

  • 4.
    Wesslander, Karin
    SMHI, Samhälle och säkerhet.
    Coastal eutrophication status assessment using HEAT 1.0 (WFD methodology) versus HEAT 3.0 (MSFD methodology) and  Development of an oxygen consumption  indicator2017Rapport (Annet vitenskapelig)
    Abstract [en]

    This report contains two parts which are self standing reports and a contribution to the HELCOM project EUTRO-OPER. The work has been funded and commissioned by SwAM (Swedish agency for marine and water management) 2014-2015.

    • Coastal eutrophication status assessment using HEAT 1.0 (WFD methodology) versus HEAT 3.0 (MSFD methodology)

    Eutrophication status is assessed nationally in coastal waters within the Water Framework Directive (WFD) and in open sea areas within the Marine Strategy Framework Directive (MSFD). Both WFD and MSFD consider eutrophication but with different approaches and it is therefore a need for harmonisation in the assessment process.   The Excel based tool HEAT (HELCOM Eutrophication Assessment Tool) has been used in previous assessments in the HELCOM region. There are two versions of the tool; HEAT 1.0 and HEAT 3.0, the first is based on the WFD methodology and the second is based on the MSFD methodology. The main difference between HEAT 1.0 and HEAT 3.0 is how the indicators are grouped. Here we assess the eutrophication status in coastal waters by applying HEAT and compare the results with the national WFD assessments. The present test includes data on 33 selected coastal water bodies in five countries: Estonia, Finland, Latvia, Poland and Sweden. Data on reference condition, acceptable deviation, status and class boundaries of all indicators used in WFD for reporting ecological status (biological and physical-chemical) have been provided for each tested water body. The data has been inserted in the HEAT 1.0 and HEAT 3.0 tools and been compared with the national WFD assessments.   Both HEAT versions gave lower status in more than 50 % of the cases. For some tests the status changed to sub-GES from GES when HEAT is applied. The good/moderate boundary is the same in both HEAT and the WFD while the lower class boundaries in general are stricter in HEAT, which explains the lower status. In national WFD assessments expert judgment is used when there is little, no or very uncertain in situ data. The status in HEAT is given by the one-out-all-out principle but it is still possible to include expert judgment through the weighting factors.

    • Development of an oxygen consumption indicator

    It was investigated if the oxygen consumption can be used as an oxygen indicator for the Baltic Sea. The method is based on the idea of calculating the oxygen consumption in a stabile layer below the productive zone during summer and relating this to nutrient concentrations. With more nutrients available there is an increased biological production. By estimating how much oxygen is needed to mineralise the biological material it may be possible to link the oxygen consumption to eutrophication.

    The oxygen consumption was calculated for the BY15-Gotland Deep in the Eastern Gotland Basin. We identified a stabile layer between 30 and 50 m and a large change in both oxygen and nutrients from June to August. However, the oxygen consumption had a very high inter-annual variation and there were no significant correlation with the winter mean of nutrient concentrations. It was not possible to calculate the diffusion between the layers because of too sparse measurements at the stratification which limits the method. The calculation of the diffusion is however possible to improve with a model. Further on, the depth of the stabile layer is varying between areas and also between years.   We realised that the method has too many restrictions to be a functional indicator. A functional indicator shall not be dependent on heavy modelling or demand too much on expert judgement. We also investigated if a possible candidate to use as a more simple oxygen consumption indicator could be the use of oxygen saturation at a specific depth. If we assume that the temperature has not changed much since the establishment of stratification we may expect that changes in oxygen saturation observed in August at this depth would be caused by the biological oxygen consumption occurring during late spring and summer. The correlation with winter mean nutrients slightly improved in this case.

  • 5.
    Wesslander, Karin
    et al.
    SMHI, Samhälle och säkerhet.
    Andersson, Lars
    SMHI, Samhälle och säkerhet.
    Axe, Philip
    SMHI, Forskningsavdelningen, Oceanografi.
    Johansson, Johannes
    SMHI, Samhälle och säkerhet.
    Linders, Johanna
    SMHI, Samhälle och säkerhet.
    Nexelius, Nils
    SMHI, Samhälle och säkerhet.
    Skjevik, Ann-Turi
    SMHI, Samhälle och säkerhet.
    Swedish National Report on Eutrophication Status in the Skagerrak, Kattegat and the Sound - OSPAR ASSESSMENT 20162017Rapport (Annet vitenskapelig)
    Abstract [en]

    The Swedish OSPAR waters were assessed by applying the OSPAR Common Procedure for the time period 2006 – 2014. The Swedish parts of Skagerrak, Kattegat and the Sound constitute the outer part of the transition zone between the estuarine Baltic Sea and the oceanic North Sea and were investigated for nutrients, chlorophyll-a,oxygen, macrophytes, phytoplankton and zoobenthos. The conclusion from the overall assessment of the Swedish OSPAR waters was that only Skagerrak open sea could be classified as a Non-Problem Area and all other assessment units were classified as Problem Areas.  Atmospheric input of nitrogen significantly decreased in both Skagerrak and Kattegat and the land based input of total nutrients also decreased in Skagerrak, Kattegat as well as the Sound. However, the short-term trend of nitrogen input to the Sound was positive. Skagerrak is governed by trans-boundary transports from the North Sea of mainly nitrogen but also phosphorus. Kattegat receives trans-boundary nutrients from both the Baltic Sea through the Sound and from Skagerrak and transports nutrients towards the coast and the western part of the basin.  Overall, concentrations of DIN, DIP, TN and chlorophyll-a decreased in most areas, however, no significant trends were found for DIP. Increasing concentrations were found in silicate, POC and TP. The Secchi depth increased in most areas. Oxygen deficiency was mainly a problem in the fjords and the Kattegat open sea.  In Skagerrak coastal waters winter nutrients were only elevated in the fjords. Concentrations of DIN generally decreased significantly and there were tendencies of decreasing DIP. This pattern was also supported by the total nitrogen while total phosphorus increased. Secchi depth was improving and there was a significant positive trend of increasing depths. However, zoobenthos were still in bad condition and phytoplankton indicator species were often elevated. Chlorophyll-a concentrations were generally decreasing but still elevated in the inner coastal waters. There were also problems with algal toxins such as DST (Diarrhetic Shellfish Toxin) and PST (Paralystic Shellfish Toxin) infections in the area. According to the OSPAR classification scheme, a unit with no evident increased nutrient enrichment can be classified as a Problem Area but the cause might be due to trans-boundary transport from adjacent areas. In the open area of Kattegat there were still problems with oxygen deficiency, especially in the southern parts, even though the trend was significantly positive for the assessment period 2006 – 2014. Concentrations of chlorophyll-a and DIN decreased significantly, however, DIN levels were still generally elevated, especially in the southern parts of Kattegat while DIP was closer to the assessment level. In Kattegat coastal waters winter nutrients were elevated in all assessment units, except from the inner coastal waters, even though there was a general pattern of decreasing going trends. Chlorophyll-a was mainly elevated in the Sound and the estuaries. Secchi depth is generally improving and a significant increase was seen in the Sound. Also in Kattegat, zoobenthos were in bad condition and phytoplankton indicator species were often elevated. 

  • 6.
    Wesslander, Karin
    et al.
    SMHI, Samhälle och säkerhet.
    Viktorsson, Lena
    SMHI, Samhälle och säkerhet.
    Summary of the Swedish National Marine Monitoring 2016 - Hydrography, nutrients and phytoplankton2017Rapport (Annet vitenskapelig)
    Abstract [en]

    Results from the Swedish national marine monitoring in the pelagic during 2016 are presented. The institutes who conduct the national monitoring are SMHI (Swedish meteorological and hydrological institute), SU (Stockholm University) and UMF (Umeå marine sciences centre). The presented parameters in this report are; salinity, temperature, oxygen, dissolved inorganic phosphorous, total phosphorous, dissolved inorganic nitrogen, total nitrogen, dissolved silica, chlorophyll and phytoplankton. Secchi depth, zooplankton, humus, primary production, pH and alkalinity are also measured but not presented. Seasonal plots for surface waters are presented in Appendix I.  Time series for surface waters (0-10 m) and bottom waters are presented in Appendix II. The amount of nutrients in the sub-basins of the Baltic Sea is presented per season and year in Appendix III.Exceptional events 2016 

    • A warm September due to several high pressure systems, with temperatures more than one standard deviation above mean in almost all stations from Skagerrak, Kattegat and the Baltic Proper.
    • Low oxygen in Kattegat bottom water during autumn as can be seen in the seasonal plots for both Anholt E and Fladen.
    • Improved oxygen condition in the East Gotland Basin, due to an increased frequency of deep water inflows in comparison to the period 1983 until the large inflow in December 2014. The inflow of 30 km3 in the beginning of the year could be tracked in the deep water in the Eastern Gotland Basin in June.
    •  Elevated levels of silicate have been observed in the Baltic Sea since 2014 and the silicate levels were also elevated this year but mainly in the central and the northern parts of the Baltic Proper.
    • In July there were high cell numbers of the dinoflagellate Dinophysis acuminata, which caused high levels of toxins in blue mussels. During this period it was forbidden to harvest blue mussels along the Bohus coast.
    • Unusual long period of cyanobacteria bloom in the Baltic Sea.
  • 7.
    Wesslander, Karin
    et al.
    SMHI, Samhälle och säkerhet.
    Viktorsson, Lena
    SMHI, Samhälle och säkerhet.
    Fölster, Jens
    Drakare, Stina
    Sonesten, Lars
    Förslag till plan för revidering av fysikalisk-kemiska bedömningsgrunder för ekologisk status i sjöar, vattendrag och kustvatten Del A: SJÖAR OCH VATTENDRAG (SLU) Del B: KUSTVATTEN (SMHI)2017Rapport (Annet vitenskapelig)
  • 8.
    Wesslander, Karin
    et al.
    SMHI, Samhälle och säkerhet.
    Viktorsson, Lena
    SMHI, Samhälle och säkerhet.
    Skjevik, Ann-Turi
    SMHI, Samhälle och säkerhet.
    The Swedish National Marine Monitoring Programme 2018. Hydrography Nutrients Phytoplankton2019Rapport (Annet vitenskapelig)
    Abstract [en]

    This report presents the main results of the Swedish national marine monitoring programme of thepelagic during 2018. The monitoring data of hydrography, nutrients and phytoplankton are analysedfor the seas surrounding Sweden: the Skagerrak, the Kattegat, the Sound, the Baltic Proper, theBothnian Sea and the Bothnian Bay.The national environmental monitoring of the pelagic is carried out by SMHI (SwedishMeteorological and Hydrological Institute), Stockholm University and UMF (Umeå Marine SciencesCentre). Data is collected, analysed and reported with support from Swedish environmentalmonitoring and on behalf of by SwAM (Swedish Agency for Marine and Water Management). TheSMHI monitoring is made in cooperation between the national environmental monitoring of thepelagic and the SMHI oceanographic sampling programme for the seas surrounding Sweden and is cofinancedby SwAM and SMHI. This annual summary of the national monitoring is made by SMHI andis financed by the contract between SwAM and SMHI.The weather in 2018 was characterized by high air temperatures and a few storms that impliedconsequences for the state in the sea. The spring arrived quickly and the sea surface temperatureincreased rapidly from April to May. In August and September two storms, named Johanne and Knud,passed the region and the surface layer was well-mixed at several stations. At the East coast upwellingevents were noted in both the Baltic Proper and the Bothnian Sea.During the year there were two small deep water inflows to the Baltic Proper that temporarilyimproved the oxygen condition in the southern parts. No improvements of the oxygen condition wereseen in the Eastern and Western Gotland Basins, instead the amount of hydrogen sulphide increased inthese basins during the year.The spring bloom had arrived in the Skagerrak and the Kattegat in March and concentrations ofdissolved inorganic phosphorus (DIP) and dissolved inorganic nitrogen (DIN) were close to or at thedetection limit from April to September. In the Skagerrak and the Kattegat the spring bloom wasdominated by the diatom Skeletonema marinoi. In the Baltic Proper the spring bloom was observed amonth later, in April. The extensive cyanobacteria bloom in the Baltic Proper started already in Mayand during the late September cruise cyanobacteria were still abundant. The dinoflagellateProrocentrum compressum was found in high cell numbers during the autumn at all stations on theWest coast. This flagellate has rarely been observed previously and although it is not harmful it isinteresting when species suddenly occur and stay for a longer period. The potentially harmful diatomgenus Pseudo-nitzschia bloomed in the beginning of December.Surface concentrations of DIP and DIN were mainly normal except from in the Skagerrak and theKattegat where concentrations were lower than usual in December. Concentrations of silicate wereabove normal levels before the spring bloom at most of the stations and in the Baltic Proper silicatewas also high in the autumn.In 2018 there were some difficulties with available research vessels for the planned cruises and somecruises needed to be cancelled with short notice. Many planned observations were therefore missed, inparticular during the summer period.

  • 9.
    Wesslander, Karin
    et al.
    SMHI, Samhälle och säkerhet.
    Viktorsson, Lena
    SMHI, Samhälle och säkerhet.
    Skjevik, Ann-Turi
    SMHI, Samhälle och säkerhet.
    The SwedishNational MarineMonitoringProgramme 2017: HydrographyNutrientsPhytoplankton2018Rapport (Annet vitenskapelig)
    Abstract [en]

    This report presents the main results of the Swedish national marine monitoring programme of the pelagic during 2017. The monitoring data of hydrography, nutrients and phytoplankton are analysed for the seas surrounding Sweden: Skagerrak, Kattegat, The Sound, Baltic Proper, Bothnian Sea and Bothnian Bay. The monitoring is carried out by SMHI (Swedish Meteorological and Hydrological Institute), SU (Stockholm University) and UMF (Umeå Marine Sciences Centre) and the monitoring programme is co-funded by SwAM (Swedish Agency for Marine and Water Management), SMHI, SU and UMF. Data is collected, analysed and reported with support from Swedish environmental monitoring and commissioned by SwaM.

    The Baltic current along the Swedish west coast implies large variations in surface salinity and the unusually large outflow of brackish water from the Baltic Sea in 2017 was reflected as low surface salinity in Skagerrak and Kattegat in the beginning of the year. There were no major deep water inflows to the Baltic Sea during 2017 but a few inflows of minor magnitude. These minor inflows only temporarily improved the oxygen condition in the Bornholm Basin and in the southern part of the Eastern Gotland Basin.

    The salinity below the halocline was above normal in the Gotland Basins and in the Northern Baltic Proper, and also in the surface layer in the Eastern Gotland Basin for almost the whole year.

    In Skagerrak and Kattegat, surface concentrations of phosphate and dissolved inorganic nitrogen were normal while dissolved silica concentrations were elevated especially in spring. In the Baltic Sea, the concentration of silicate in the surface water was elevated in all basins. According to the estimated total content of silicate there has been an increase in silica content in the Baltic Sea since the early 1990’s. Surface concentrations of phosphate were above normal in the Gotland basins and the Northern Baltic Proper while inorganic nitrogen content was above normal in parts of the Arkona and Bornholm basins. During spring and summer, the inorganic nitrogen was consumed at greater depths than usual in the Baltic Proper. In particular concentrations of phosphate and dissolved silica were generally lower than normal in the bottom layer.

    Instead of diatoms, the flagellate genus Pseudochattonella, which is potentially toxic to fish, bloomed in the Kattegat and Skagerrak areas in February – April. During autumn there was a prolonged diatom bloom though. In the Baltic Sea spring bloom occurred in April. The cyanobacteria bloom began in May already with Aphanizomenon flos-aquae. During June and July all three of the filamentous cyanobacteria, A. flos-aquae, Dolichospermum lemmermannii and the potentially harmful Nodularia spumigena were found in the phytoplankton samples in various amounts.

    In the Bothnian Sea, the sea surface temperature during summer was lower than normal and the oxygen conditions in the bottom layer was not critical but still below normal levels.

1 - 9 of 9
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.7
|