Change search
Refine search result
1 - 37 of 37
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Alfieri, Lorenzo
    et al.
    Bisselink, Berny
    Dottori, Francesco
    Naumann, Gustavo
    de Roo, Ad
    Salamon, Peter
    Wyser, Klaus
    SMHI, Research Department, Climate research - Rossby Centre.
    Feyen, Luc
    Global projections of river flood risk in a warmer world2017In: Earth's Future, ISSN 1384-5160, E-ISSN 2328-4277, Vol. 5, no 2, p. 171-182Article in journal (Refereed)
  • 2. Bellucci, A.
    et al.
    Haarsma, R.
    Gualdi, S.
    Athanasiadis, P. J.
    Caian, Mihaela
    SMHI, Research Department, Climate research - Rossby Centre.
    Cassou, C.
    Fernandez, E.
    Germe, A.
    Jungclaus, J.
    Kroeger, J.
    Matei, D.
    Mueller, W.
    Pohlmann, H.
    Salas y Melia, D.
    Sanchez, E.
    Smith, D.
    Terray, L.
    Wyser, Klaus
    SMHI, Research Department, Climate research - Rossby Centre.
    Yang, S.
    An assessment of a multi-model ensemble of decadal climate predictions2015In: Climate Dynamics, ISSN 0930-7575, E-ISSN 1432-0894, Vol. 44, no 9-10, p. 2787-2806Article in journal (Refereed)
    Abstract [en]

    A multi-model ensemble of decadal prediction experiments, performed in the framework of the EU-funded COMBINE (Comprehensive Modelling of the Earth System for Better Climate Prediction and Projection) Project following the 5th Coupled Model Intercomparison Project protocol is examined. The ensemble combines a variety of dynamical models, initialization and perturbation strategies, as well as data assimilation products employed to constrain the initial state of the system. Taking advantage of the multi-model approach, several aspects of decadal climate predictions are assessed, including predictive skill, impact of the initialization strategy and the level of uncertainty characterizing the predicted fluctuations of key climate variables. The present analysis adds to the growing evidence that the current generation of climate models adequately initialized have significant skill in predicting years ahead not only the anthropogenic warming but also part of the internal variability of the climate system. An important finding is that the multi-model ensemble mean does generally outperform the individual forecasts, a well-documented result for seasonal forecasting, supporting the need to extend the multi-model framework to real-time decadal predictions in order to maximize the predictive capabilities of currently available decadal forecast systems. The multi-model perspective did also allow a more robust assessment of the impact of the initialization strategy on the quality of decadal predictions, providing hints of an improved forecast skill under full-value (with respect to anomaly) initialization in the near-term range, over the Indo-Pacific equatorial region. Finally, the consistency across the different model predictions was assessed. Specifically, different systems reveal a general agreement in predicting the near-term evolution of surface temperatures, displaying positive correlations between different decadal hindcasts over most of the global domain.

  • 3. Betts, Richard A.
    et al.
    Alfieri, Lorenzo
    Bradshaw, Catherine
    Caesar, John
    Feyen, Luc
    Friedlingstein, Pierre
    Gohar, Laila
    Koutroulis, Aristeidis
    Lewis, Kirsty
    Morfopoulos, Catherine
    Papadimitriou, Lamprini
    Richardson, Katy J.
    Tsanis, Ioannis
    Wyser, Klaus
    SMHI, Research Department, Climate research - Rossby Centre.
    Changes in climate extremes, fresh water availability and vulnerability to food insecurity projected at 1.5 degrees C and 2 degrees C global warming with a higher-resolution global climate model2018In: Philosophical Transactions. Series A: Mathematical, physical, and engineering science, ISSN 1364-503X, E-ISSN 1471-2962, Vol. 376, no 2119, article id 20160452Article in journal (Refereed)
  • 4.
    Doescher, Ralf
    et al.
    SMHI, Research Department, Climate research - Rossby Centre.
    Wyser, Klaus
    SMHI, Research Department, Climate research - Rossby Centre.
    Meier, Markus
    SMHI, Research Department, Oceanography.
    Qian, Minwei
    Redler, Ren
    Quantifying Arctic contributions to climate predictability in a regional coupled ocean-ice-atmosphere model2010In: Climate Dynamics, ISSN 0930-7575, E-ISSN 1432-0894, Vol. 34, no 7-8, p. 1157-1176Article in journal (Refereed)
    Abstract [en]

    The relative importance of regional processes inside the Arctic climate system and the large scale atmospheric circulation for Arctic interannual climate variability has been estimated with the help of a regional Arctic coupled ocean-ice-atmosphere model. The study focuses on sea ice and surface climate during the 1980s and 1990s. Simulations agree reasonably well with observations. Correlations between the winter North Atlantic Oscillation index and the summer Arctic sea ice thickness and summer sea ice extent are found. Spread of sea ice extent within an ensemble of model runs can be associated with a surface pressure gradient between the Nordic Seas and the Kara Sea. Trends in the sea ice thickness field are widely significant and can formally be attributed to large scale forcing outside the Arctic model domain. Concerning predictability, results indicate that the variability generated by the external forcing is more important in most regions than the internally generated variability. However, both are in the same order of magnitude. Local areas such as the Northern Greenland coast together with Fram Straits and parts of the Greenland Sea show a strong importance of internally generated variability, which is associated with wind direction variability due to interaction with atmospheric dynamics on the Greenland ice sheet. High predictability of sea ice extent is supported by north-easterly winds from the Arctic Ocean to Scandinavia.

  • 5. Dosio, Alessandro
    et al.
    Mentaschi, Lorenzo
    Fischer, Erich M.
    Wyser, Klaus
    SMHI, Research Department, Climate research - Rossby Centre.
    Extreme heat waves under 1.5 degrees C and 2 degrees C global warming2018In: Environmental Research Letters, ISSN 1748-9326, E-ISSN 1748-9326, Vol. 13, no 5, article id 054006Article in journal (Refereed)
  • 6. Hazeleger, W.
    et al.
    Guemas, V.
    Wouters, B.
    Corti, S.
    Andreu-Burillo, I.
    Doblas-Reyes, F. J.
    Wyser, Klaus
    SMHI, Research Department, Climate research - Rossby Centre.
    Caian, Mihaela
    SMHI, Research Department, Climate research - Rossby Centre.
    Multiyear climate predictions using two initialization strategies2013In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 40, no 9, p. 1794-1798Article in journal (Refereed)
    Abstract [en]

    Multiyear climate predictions with two initialization strategies are systematically assessed in the EC-Earth V2.3 climate model. In one ensemble, an estimate of the observed climate state is used to initialize the model. The other uses estimates of observed ocean and sea ice anomalies on top of the model climatology. The ensembles show similar spatial characteristics of drift related to the biases in control simulations. As expected, the drift is less with anomaly initialization. The full field initialization overshoots to a colder state which is related to cold biases in the tropics and North Atlantic, associated with oceanic processes. Despite different amplitude of the drift, both ensembles show similar skill in multiyear global temperature predictions, but regionally differences are found. On multiyear time scales, initialization with observations enhances both deterministic and probabilistic skill scores in the North Atlantic. The probabilistic verification shows skill over the European continent.

  • 7. Hazeleger, W.
    et al.
    Wang, X.
    Severijns, C.
    Stefanescu, S.
    Bintanja, R.
    Sterl, A.
    Wyser, Klaus
    SMHI, Research Department, Climate research - Rossby Centre.
    Semmler, T.
    Yang, S.
    van den Hurk, B.
    van Noije, T.
    van der Linden, E.
    van der Wiel, K.
    EC-Earth V2.2: description and validation of a new seamless earth system prediction model2012In: Climate Dynamics, ISSN 0930-7575, E-ISSN 1432-0894, Vol. 39, no 11, p. 2611-2629Article in journal (Refereed)
    Abstract [en]

    EC-Earth, a new Earth system model based on the operational seasonal forecast system of the European Centre for Medium-Range Weather Forecasts (ECMWF), is presented. The performance of version 2.2 (V2.2) of the model is compared to observations, reanalysis data and other coupled atmosphere-ocean-sea ice models. The large-scale physical characteristics of the atmosphere, ocean and sea ice are well simulated. When compared to other coupled models with similar complexity, the model performs well in simulating tropospheric fields and dynamic variables, and performs less in simulating surface temperature and fluxes. The surface temperatures are too cold, with the exception of the Southern Ocean region and parts of the Northern Hemisphere extratropics. The main patterns of interannual climate variability are well represented. Experiments with enhanced CO2 concentrations show well-known responses of Arctic amplification, land-sea contrasts, tropospheric warming and stratospheric cooling. The global climate sensitivity of the current version of EC-Earth is slightly less than 1 K/(W m(-2)). An intensification of the hydrological cycle is found and strong regional changes in precipitation, affecting monsoon characteristics. The results show that a coupled model based on an operational seasonal prediction system can be used for climate studies, supporting emerging seamless prediction strategies.

  • 8. Hazeleger, Wilco
    et al.
    Severijns, Camiel
    Semmler, Tido
    Stefanescu, Simona
    Yang, Shuting
    Wang, Xueli
    Wyser, Klaus
    SMHI, Research Department, Climate research - Rossby Centre.
    Dutra, Emanuel
    Baldasano, Jose M.
    Bintanja, Richard
    Bougeault, Philippe
    Caballero, Rodrigo
    Ekman, Annica M. L.
    Christensen, Jens H.
    van den Hurk, Bart
    Jimenez, Pedro
    Jones, Colin
    SMHI, Research Department, Climate research - Rossby Centre.
    Kållberg, Per
    SMHI, Research Department, Meteorology.
    Koenigk, Torben
    SMHI, Research Department, Climate research - Rossby Centre.
    McGrath, Ray
    Miranda, Pedro
    Van Noije, Twan
    Palmer, Tim
    Parodi, Jose A.
    Schmith, Torben
    Selten, Frank
    Storelvmo, Trude
    Sterl, Andreas
    Tapamo, Honore
    Vancoppenolle, Martin
    Viterbo, Pedro
    Willén, Ulrika
    SMHI, Research Department, Climate research - Rossby Centre.
    EC-Earth A Seamless Earth-System Prediction Approach in Action2010In: Bulletin of The American Meteorological Society - (BAMS), ISSN 0003-0007, E-ISSN 1520-0477, Vol. 91, no 10, p. 1357-1363Article in journal (Other academic)
  • 9. Hytteborn, Julia K.
    et al.
    Temnerud, Johan
    SMHI, Research Department, Hydrology.
    Alexander, Richard B.
    Boyer, Elizabeth W.
    Futter, Martyn N.
    Froberg, Mats
    Dahne, Joel
    SMHI, Professional Services.
    Bishop, Kevin H.
    Patterns and predictability in the intra-annual organic carbon variability across the boreal and hemiboreal landscape2015In: Science of the Total Environment, ISSN 0048-9697, E-ISSN 1879-1026, Vol. 520, p. 260-269Article in journal (Refereed)
    Abstract [en]

    Factors affecting total organic carbon (TOC) concentrations in 215 watercourses across Sweden were investigated using parameter parsimonious regression approaches to explain spatial and temporal variabilities of the TOC water quality responses. We systematically quantified the effects of discharge, seasonality, and long-term trend as factors controlling intra-annual (among year) and inter-annual (within year) variabilities of TOC by evaluating the spatial variability in model coefficients and catchment characteristics (e.g. land cover, retention time, soil type). Catchment area (0.18-47,000 km(2)) and land cover types (forests, agriculture and alpine terrain) are typical for the boreal and hemiboreal zones across Fennoscandia. Watercourses had at least 6 years of monthly water quality observations between 1990 and 2010. Statistically significant models (p < 0.05) describing variation of TOC in streamflow were identified in 209 of 215 watercourses with a mean Nash-Sutcliffe efficiency index of 0.44. Increasing long-term trends were observed in 149 (70%) of the watercourses, and intra-annual variation in TOC far exceeded inter-annual variation. The average influences of the discharge and seasonality terms on intra-annual variations in daily TOC concentration were 1.4 and 1.3 mg l(-1) (13 and 12% of the mean annual TOC), respectively. The average increase in TOC was 0.17 mg l(-1) year(-1) (1.6% year(-1)). Multivariate regression with over 90 different catchment characteristics explained 21% of the spatial variation in the linear trend coefficient, less than 20% of the variation in the discharge coefficient and 73% of the spatial variation in mean TOC. Specific discharge, water residence time, the variance of daily precipitation, and lake area, explained 45% of the spatial variation in the amplitude of the TOC seasonality. Because the main drivers of temporal variability in TOC are seasonality and discharge, first-order estimates of the influences of climatic variability and change on TOC concentration should be predictable if the studied catchments continue to respond similarly. (C) 2015 Elsevier B.V. All rights reserved.

  • 10. Jiang, Xianan
    et al.
    Waliser, Duane E.
    Xavier, Prince K.
    Petch, Jon
    Klingaman, Nicholas P.
    Woolnough, Steven J.
    Guan, Bin
    Bellon, Gilles
    Crueger, Traute
    DeMott, Charlotte
    Hannay, Cecile
    Lin, Hai
    Hu, Wenting
    Kim, Daehyun
    Lappen, Cara-Lyn
    Lu, Mong-Ming
    Ma, Hsi-Yen
    Miyakawa, Tomoki
    Ridout, James A.
    Schubert, Siegfried D.
    Scinocca, John
    Seo, Kyong-Hwan
    Shindo, Eiki
    Song, Xiaoliang
    Stan, Cristiana
    Tseng, Wan-Ling
    Wang, Wanqiu
    Wu, Tongwen
    Wu, Xiaoqing
    Wyser, Klaus
    SMHI, Research Department, Climate research - Rossby Centre.
    Zhang, Guang J.
    Zhu, Hongyan
    Vertical structure and physical processes of the Madden-Julian oscillation: Exploring key model physics in climate simulations2015In: Journal of Geophysical Research - Atmospheres, ISSN 2169-897X, E-ISSN 2169-8996, Vol. 120, no 10, p. 4718-4748Article in journal (Refereed)
    Abstract [en]

    Aimed at reducing deficiencies in representing the Madden-Julian oscillation (MJO) in general circulation models (GCMs), a global model evaluation project on vertical structure and physical processes of the MJO was coordinated. In this paper, results from the climate simulation component of this project are reported. It is shown that the MJO remains a great challenge in these latest generation GCMs. The systematic eastward propagation of the MJO is only well simulated in about one fourth of the total participating models. The observed vertical westward tilt with altitude of the MJO is well simulated in good MJO models but not in the poor ones. Damped Kelvin wave responses to the east of convection in the lower troposphere could be responsible for the missing MJO preconditioning process in these poor MJO models. Several process-oriented diagnostics were conducted to discriminate key processes for realistic MJO simulations. While large-scale rainfall partition and low-level mean zonal winds over the Indo-Pacific in a model are not found to be closely associated with its MJO skill, two metrics, including the low-level relative humidity difference between high- and low-rain events and seasonal mean gross moist stability, exhibit statistically significant correlations with the MJO performance. It is further indicated that increased cloud-radiative feedback tends to be associated with reduced amplitude of intraseasonal variability, which is incompatible with the radiative instability theory previously proposed for the MJO. Results in this study confirm that inclusion of air-sea interaction can lead to significant improvement in simulating the MJO.

  • 11. Johansson, Mattias
    et al.
    Galle, Bo
    Zhang, Yan
    Rivera, Claudia
    Chen, Deliang
    Wyser, Klaus
    SMHI, Research Department, Climate research - Rossby Centre.
    The dual-beam mini-DOAS technique-measurements of volcanic gas emission, plume height and plume speed with a single instrument2009In: Bulletin of Volcanology, ISSN 0258-8900, E-ISSN 1432-0819, Vol. 71, no 7, p. 747-751Article in journal (Refereed)
    Abstract [en]

    The largest error in determining volcanic gas fluxes using ground based optical remote sensing instruments is typically the determination of the plume speed, and in the case of fixed scanning instruments also the plume height. We here present a newly developed technique capable of measuring plume height, plume speed and gas flux using one single instrument by simultaneously collecting scattered sunlight in two directions. The angle between the two measurement directions is fixed, removing the need for time consuming in-field calibrations. The plume height and gas flux is measured by traversing the plume and the plume speed is measured by performing a stationary measurement underneath the plume. The instrument was tested in a field campaign in May 2005 at Mt. Etna, Italy, where the measured results are compared to wind fields derived from a meso-scale meteorological model (MM5). The test and comparison show that the instrument is functioning and capable of estimating wind speed at the plume height.

  • 12.
    Jones, Colin
    et al.
    SMHI, Research Department, Climate research - Rossby Centre.
    Wyser, Klaus
    SMHI, Research Department, Climate research - Rossby Centre.
    Ullerstig, Anders
    SMHI, Research Department, Climate research - Rossby Centre.
    Willen, Ulrika
    SMHI, Research Department, Climate research - Rossby Centre.
    The Rossby Centre regional atmospheric climate model part II: Application to the Arctic climate2004In: Ambio, ISSN 0044-7447, E-ISSN 1654-7209, Vol. 33, no 4-5, p. 211-220Article in journal (Refereed)
    Abstract [en]

    The Rossby Centre regional climate model (RCA2) has been integrated over the Arctic Ocean as part of the international ARCMIP project. Results have been compared to observations derived from the SHEBA data set. The standard RCA2 model overpredicts cloud cover and downwelling longwave radiation, during the Arctic winter. This error was improved by introducing a new cloud parameterization, which significantly improves the annual cycle of cloud cover. Compensating biases between clear sky downwelling longwave radiation and longwave radiation emitted from cloud base were identified. Modifications have been introduced to the model radiation scheme that more accurately treat solar radiation interaction with ice crystals. This leads to a more realistic representation of cloud-solar radiation interaction. The clear sky portion of the model radiation code transmits too much solar radiation through the atmosphere, producing a positive bias at the top of the frequent boundary layer clouds. A realistic treatment of the temporally evolving albedo, of both sea-ice and snow, appears crucial for an accurate simulation of the net surface energy budget. Likewise, inclusion of a prognostic snow-surface temperature seems necessary, to accurately simulate near-surface thermodynamic processes in the Arctic.

  • 13.
    Karlsson, Karl-Göran
    et al.
    SMHI, Research Department, Atmospheric remote sensing.
    Jones, Colin
    SMHI, Research Department, Climate research - Rossby Centre.
    Willén, Ulrika
    SMHI, Research Department, Climate research - Rossby Centre.
    Wyser, Klaus
    SMHI, Research Department, Climate research - Rossby Centre.
    USE OF A HIGH-RESOLUTION CLOUD CLIMATE DATA SET FOR VALIDATION OF ROSSBY CENTRE CLIMATE SIMULATIONS2004In: 2004 EUMETSAT METEOROLOGICAL SATELLITE CONFERENCE: Ocean and Climate Observations, EUMETSAT , 2004, p. 465-473Conference paper (Other academic)
  • 14.
    Karlsson, Karl-Göran
    et al.
    SMHI, Research Department, Atmospheric remote sensing.
    Willen, Ulrika
    SMHI, Research Department, Climate research - Rossby Centre.
    Jones, Colin
    SMHI, Research Department, Climate research - Rossby Centre.
    Wyser, Klaus
    SMHI, Research Department, Climate research - Rossby Centre.
    Evaluation of regional cloud climate simulations over Scandinavia using a 10-year NOAA advanced very high resolution radiometer cloud climatology2008In: Journal of Geophysical Research - Atmospheres, ISSN 2169-897X, E-ISSN 2169-8996, Vol. 113, no D1, article id D01203Article in journal (Refereed)
    Abstract [en]

    A satellite-derived (NOAA Advanced Very High Resolution Radiometer) cloud climatology over the Scandinavian region covering the period 1991 - 2001 has been used to evaluate the performance of cloud simulations of the Swedish Meteorological and Hydrological Institute Rossby Centre regional climate model (RCA3). Several methods of adapting the satellite and model data sets to allow a meaningful comparison were applied. RCA3-simulated total cloud cover was shown to agree within a few percent of the satellite-retrieved cloud amounts on seasonal and annual timescales. However, a substantial imbalance between the respective RCA3 contributions from low-, medium- and high-level clouds was seen. The differences from satellite-derived contributions were +2.4% for high-level clouds, -5.2% for medium-level clouds and +4.0% for low- level clouds. In addition, an overrepresentation of cloud categories with high optical thicknesses was seen for all vertical cloud groups, particularly during the summer season. Some specific features of the geographical distribution of cloudiness were also noticed. Most pronounced were the excess of cloud amounts over the Scandinavian mountain range and a deficit leeward of the mountains. The overall results imply problems with the RCA3-modeled surface radiation budget components by causing reduced incoming solar radiation and increased downwelling longwave radiation.

  • 15.
    Kjellström, Erik
    et al.
    SMHI, Research Department, Climate research - Rossby Centre.
    Bärring, Lars
    SMHI, Research Department, Climate research - Rossby Centre.
    Gollvik, Stefan
    Meterologi.
    Hansson, Ulf
    SMHI, Research Department, Climate research - Rossby Centre.
    Jones, Colin
    SMHI, Research Department, Climate research - Rossby Centre.
    Samuelsson, Patrick
    SMHI, Research Department, Climate research - Rossby Centre.
    Ullerstig, Anders
    SMHI, Research Department, Climate research - Rossby Centre.
    Willén, Ulrika
    SMHI, Research Department, Climate research - Rossby Centre.
    Wyser, Klaus
    SMHI, Research Department, Climate research - Rossby Centre.
    A 140-year simulation of European climate with the new version of the Rossby Centre regional atmospheric climate model (RCA3)2005Report (Other academic)
    Abstract [en]

    This report presents the latest version of the Rossby Centre regional atmospheric model, RCA3, with focus on model improvements since the earlier version, RCA2. The main changes in RCA3 relate to the treatment of land surface processes. Apart from the changes in land surface parameterizations several changes in the calculation of radiation, clouds, condensate and precipitation have been made. The new parameterizations hold a more realistic description of the climate system.Simulated present day climate is evaluated compared to observations. The new model version show equally good, or better, correspondence to observational climatologies as RCA2, when forced by perfect boundary conditions. Seasonal mean temperature errors are generally within ±1oC except during winter in north-western Russia where a larger positive bias is identified. Both the diurnal temperature range and the annual temperature range are found to be underestimated in the model. Precipitation biases are generally smaller than in the corresponding reanalysis data used as boundary conditions, showing the benefit of a higher horizontal resolution.The model is used for the regionalization of two transient global climate change projections for the time period 1961- 2100. The radiative forcing of the climate system is based on observed concentrations of greenhouse gases until 1990 and on the IPCC SRES B2 and A2 emissions scenarios for the remaining time period. Long-term averages as well as measures of the variability around these averages are presented for a number of variables including precipitation and near-surface temperature. It is shown that the changes in variability sometimes differ from the changes in averages. For instance, in north-eastern Europe, the mean increase in wintertime temperatures is followed by an even stronger reduction in the number of very cold days in winter. This kind of performance of the climate system implies that methods of inferring data from climate change projections to other periods than those actually simulated have to be used with care, at least when it comes to variables that are expected to change in a non-linear way. Further, these new regional climate change projections address the whole 21st century.

  • 16.
    Koenigk, Torben
    et al.
    SMHI, Research Department, Climate research - Rossby Centre.
    Beatty, Christof Konig
    Caian, Mihaela
    SMHI, Research Department, Climate research - Rossby Centre.
    Doescher, Ralf
    SMHI, Research Department, Climate research - Rossby Centre.
    Wyser, Klaus
    SMHI, Research Department, Climate research - Rossby Centre.
    Potential decadal predictability and its sensitivity to sea ice albedo parameterization in a global coupled model2012In: Climate Dynamics, ISSN 0930-7575, E-ISSN 1432-0894, Vol. 38, no 11-12, p. 2389-2408Article in journal (Refereed)
    Abstract [en]

    Decadal prediction is one focus of the upcoming 5th IPCC Assessment report. To be able to interpret the results and to further improve the decadal predictions it is important to investigate the potential predictability in the participating climate models. This study analyzes the upper limit of climate predictability on decadal time scales and its dependency on sea ice albedo parameterization by performing two perfect ensemble experiments with the global coupled climate model EC-Earth. In the first experiment, the standard albedo formulation of EC-Earth is used, in the second experiment sea ice albedo is reduced. The potential prognostic predictability is analyzed for a set of oceanic and atmospheric parameters. The decadal predictability of the atmospheric circulation is small. The highest potential predictability was found in air temperature at 2 m height over the northern North Atlantic and the southern South Atlantic. Over land, only a few areas are significantly predictable. The predictability for continental size averages of air temperature is relatively good in all northern hemisphere regions. Sea ice thickness is highly predictable along the ice edges in the North Atlantic Arctic Sector. The meridional overturning circulation is highly predictable in both experiments and governs most of the decadal climate predictability in the northern hemisphere. The experiments using reduced sea ice albedo show some important differences like a generally higher predictability of atmospheric variables in the Arctic or higher predictability of air temperature in Europe. Furthermore, decadal variations are substantially smaller in the simulations with reduced ice albedo, which can be explained by reduced sea ice thickness in these simulations.

  • 17.
    Koenigk, Torben
    et al.
    SMHI, Research Department, Climate research - Rossby Centre.
    Brodeau, Laurent
    Graversen, Rune Grand
    Karlsson, Johannes
    Svensson, Gunilla
    Tjernstrom, Michael
    Willén, Ulrika
    SMHI, Research Department, Climate research - Rossby Centre.
    Wyser, Klaus
    SMHI, Research Department, Climate research - Rossby Centre.
    Arctic climate change in 21st century CMIP5 simulations with EC-Earth2013In: Climate Dynamics, ISSN 0930-7575, E-ISSN 1432-0894, Vol. 40, no 11-12, p. 2719-2743Article in journal (Refereed)
    Abstract [en]

    The Arctic climate change is analyzed in an ensemble of future projection simulations performed with the global coupled climate model EC-Earth2.3. EC-Earth simulates the twentieth century Arctic climate relatively well but the Arctic is about 2 K too cold and the sea ice thickness and extent are overestimated. In the twenty-first century, the results show a continuation and strengthening of the Arctic trends observed over the recent decades, which leads to a dramatically changed Arctic climate, especially in the high emission scenario RCP8.5. The annually averaged Arctic mean near-surface temperature increases by 12 K in RCP8.5, with largest warming in the Barents Sea region. The warming is most pronounced in winter and autumn and in the lower atmosphere. The Arctic winter temperature inversion is reduced in all scenarios and disappears in RCP8.5. The Arctic becomes ice free in September in all RCP8.5 simulations after a rapid reduction event without recovery around year 2060. Taking into account the overestimation of ice in the twentieth century, our model results indicate a likely ice-free Arctic in September around 2040. Sea ice reductions are most pronounced in the Barents Sea in all RCPs, which lead to the most dramatic changes in this region. Here, surface heat fluxes are strongly enhanced and the cloudiness is substantially decreased. The meridional heat flux into the Arctic is reduced in the atmosphere but increases in the ocean. This oceanic increase is dominated by an enhanced heat flux into the Barents Sea, which strongly contributes to the large sea ice reduction and surface-air warming in this region. Increased precipitation and river runoff lead to more freshwater input into the Arctic Ocean. However, most of the additional freshwater is stored in the Arctic Ocean while the total Arctic freshwater export only slightly increases.

  • 18. Koutroulis, A. G.
    et al.
    Papadimitriou, L. V.
    Grillakis, M. G.
    Tsanis, I. K.
    Wyser, Klaus
    SMHI, Research Department, Climate research - Rossby Centre.
    Betts, R. A.
    Freshwater vulnerability under high end climate change. A pan-European assessment2018In: Science of the Total Environment, ISSN 0048-9697, E-ISSN 1879-1026, Vol. 613, p. 271-286Article in journal (Refereed)
  • 19. Koutroulis, Aristeidis G.
    et al.
    Papadimitriou, Lamprini V.
    Grillakis, Manolis G.
    Tsanis, Ioannis K.
    Wyser, Klaus
    SMHI, Research Department, Climate research - Rossby Centre.
    Caesar, John
    Betts, Richard A.
    Simulating Hydrological Impacts under Climate Change: Implications from Methodological Differences of a Pan European Assessment2018In: Water, ISSN 2073-4441, E-ISSN 2073-4441, Vol. 10, no 10, article id 1331Article in journal (Refereed)
  • 20.
    Meier, Markus
    et al.
    SMHI, Research Department, Oceanography.
    Doescher, Ralf
    SMHI, Research Department, Climate research - Rossby Centre.
    Wyser, Klaus
    SMHI, Research Department, Climate research - Rossby Centre.
    Modelling the changing climate of the Baltic Sea.2006Report (Other academic)
  • 21. Miao, J F
    et al.
    Chen, D
    Wyser, Klaus
    SMHI, Research Department, Climate research - Rossby Centre.
    Modelling subgrid scale dry deposition velocity of O-3 over the Swedish west coast with MM5-PX model2006In: Atmospheric Environment, ISSN 1352-2310, E-ISSN 1873-2844, Vol. 40, no 3, p. 415-429Article in journal (Refereed)
    Abstract [en]

    A mesoscale meteorological model (MM5) coupled with an advanced land surface model (PX LSM) is used in this study to model high-resolution (2 km) dry deposition velocity of ozone over the Swedish west coast, together with a newly revised dry deposition parameterization for air-quality models with emphasis on non-stomatal resistance. The important air-surface exchange processes for air quality (surface fluxes of heat, moisture and momentum) are also simulated by this model. The modelled subgrid scale variability of the dry deposition velocity and its dependence on land use, terrain height and synoptic conditions are investigated. It is found that a systematic difference in the deposition velocity modelled by different resolutions exists, and the difference varies diurnally and daily. The subgrid scale variation is significant, which has a clear impact on the area-averaged deposition velocity. The deposition velocity depends strongly on land use and weather conditions, but not on topography for the area studied. Meteorological conditions at subgrid scales play an important role in determining the deposition velocity. It is also concluded that the dry deposition velocity simulated in this study is reasonable, and that a 6-km resolution would be practically good enough to resolve the inhomogeneity of the surface properties for dry deposition studies in this area. The variation range of dry deposition velocity over different land use categories and the corresponding resistances are outlined. Moreover, the difference in the estimated dry deposition velocitiy between the methods using fractional land use and using dominant land use is compared. (c) 2005 Elsevier Ltd. All rights reserved.

  • 22. Miao, J. -F
    et al.
    Wyser, Klaus
    SMHI, Research Department, Climate research - Rossby Centre.
    Chen, D.
    Ritchie, H.
    Impacts of boundary layer turbulence and land surface process parameterizations on simulated sea breeze characteristics2009In: Annales Geophysicae, ISSN 0992-7689, E-ISSN 1432-0576, Vol. 27, no 6, p. 2303-2320Article in journal (Refereed)
    Abstract [en]

    This paper investigates the sensitivity of sea breeze (SB) simulations to combinations of boundary-layer turbulence and land-surface process parameterizations implemented in the MM5 mesoscale meteorological mode for an observed SB case over the Swedish west coast. Various combinations from four different planetary boundary layer (PBL) schemes [Blackadar, Gayno-Seaman (GS), Eta, MRF], and two land surface model (LSM) schemes (SLAB, Noah) with different complexity are designed to simulate a typical SB case over the Swedish west coast. The simulations are conducted using two-way interactively nested grids. Simulated 10-m winds are compared against observed near-surface wind data from the GOTE2001 campaign to examine the diurnal cycle of wind direction and speed for SB timing. The SB (vertical) circulation is also compared in the different experiments. The results show that the different combinations of PBL and LSM parameterization schemes result in different SB timing and vertical circulation characteristics. All experiments predict a delayed SB. The vertical component of the SB circulation varies in the experiments, among which the GS PBL scheme produces the strongest SB circulation. Evident differences between the SLAB and Noah LSMs are also found, especially in maximum of updraft and downdraft velocities of the SB vertical circulation. The results have significant implications for convective initiation, air quality studies and other environmental problems in coastal areas.

  • 23. Naumann, G.
    et al.
    Alfieri, L.
    Wyser, Klaus
    SMHI, Research Department, Climate research - Rossby Centre.
    Mentaschi, L.
    Betts, R. A.
    Carrao, H.
    Spinoni, J.
    Vogt, J.
    Feyen, L.
    Global Changes in Drought Conditions Under Different Levels of Warming2018In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 45, no 7, p. 3285-3296Article in journal (Refereed)
  • 24.
    Samuelsson, Patrick
    et al.
    SMHI, Research Department, Climate research - Rossby Centre.
    Jones, Colin
    SMHI, Research Department, Climate research - Rossby Centre.
    Willén, Ulrika
    SMHI, Research Department, Climate research - Rossby Centre.
    Ullerstig, Anders
    SMHI, Research Department, Climate research - Rossby Centre.
    Gollvik, Stefan
    SMHI, Research Department, Meteorology.
    Hansson, Ulf
    SMHI, Research Department, Climate research - Rossby Centre.
    Jansson, Christer
    SMHI, Research Department, Climate research - Rossby Centre.
    Kjellström, Erik
    SMHI, Research Department, Climate research - Rossby Centre.
    Nikulin, Grigory
    SMHI, Research Department, Climate research - Rossby Centre.
    Wyser, Klaus
    SMHI, Research Department, Climate research - Rossby Centre.
    The Rossby Centre Regional Climate model RCA3: model description and performance2011In: Tellus. Series A, Dynamic meteorology and oceanography, ISSN 0280-6495, E-ISSN 1600-0870, no 1, p. 4-23Article in journal (Refereed)
  • 25.
    Samuelsson, Patrick
    et al.
    SMHI, Research Department, Climate research - Rossby Centre.
    Jones, Colin
    SMHI, Research Department, Climate research - Rossby Centre.
    Willén, Ulrika
    SMHI, Research Department, Climate research - Rossby Centre.
    Ullerstig, Anders
    SMHI, Research Department, Climate research - Rossby Centre.
    Gollvik, Stefan
    SMHI, Research Department, Meteorology.
    Hansson, Ulf
    SMHI, Research Department, Climate research - Rossby Centre.
    Kjellström, Erik
    SMHI, Research Department, Climate research - Rossby Centre.
    Nikulin, Grigory
    SMHI, Research Department, Climate research - Rossby Centre.
    Wyser, Klaus
    SMHI, Research Department, Climate research - Rossby Centre.
    The Rossby Centre Regional Climate Model RCA3: Model description and performance2011In: Tellus. Series A, Dynamic meteorology and oceanography, ISSN 0280-6495, E-ISSN 1600-0870, Vol. 63A, no 1, p. 4-23Article in journal (Refereed)
  • 26.
    Sheldon, Johnston, Marston
    et al.
    SMHI, Research Department, Atmospheric remote sensing.
    Eliasson, S.
    Eriksson, P.
    Forbes, R. M.
    Wyser, Klaus
    SMHI, Research Department, Climate research - Rossby Centre.
    Zelinka, M. D.
    Diagnosing the average spatio-temporal impact of convective systems - Part 1: A methodology for evaluating climate models2013In: Atmospheric Chemistry And Physics, ISSN 1680-7316, E-ISSN 1680-7324, Vol. 13, no 23, p. 12043-12058Article in journal (Refereed)
    Abstract [en]

    An earlier method to determine the mean response of upper-tropospheric water to localised deep convective systems (DC systems) is improved and applied to the EC-Earth climate model. Following Zelinka and Hartmann (2009), several fields related to moist processes and radiation from various satellites are composited with respect to the local maxima in rain rate to determine their spatio-temporal evolution with deep convection in the central Pacific Ocean. Major improvements to the earlier study are the isolation of DC systems in time so as to prevent multiple sampling of the same event, and a revised definition of the mean background state that allows for better characterisation of the DC-system-induced anomalies. The observed DC systems in this study propagate westward at similar to 4 ms(-1). Both the upper-tropospheric relative humidity and the outgoing longwave radiation are substantially perturbed over a broad horizontal extent and for periods > 30 h. The cloud fraction anomaly is fairly constant with height but small maximum can be seen around 200 hPa. The cloud ice water content anomaly is mostly confined to pressures greater than 150 hPa and reaches its maximum around 450 hPa, a few hours after the peak convection. Consistent with the large increase in upper-tropospheric cloud ice water content, albedo increases dramatically and persists about 30 h after peak convection. Applying the compositing technique to EC-Earth allows an assessment of the model representation of DC systems. The model captures the large-scale responses, most notably for outgoing longwave radiation, but there are a number of important differences. DC systems appear to propagate east-ward in the model, suggesting a strong link to Kelvin waves instead of equatorial Rossby waves. The diurnal cycle in the model is more pronounced and appears to trigger new convection further to the west each time. Finally, the modelled ice water content anomaly peaks at pressures greater than 500 hPa and in the upper troposphere between 250 hPa and 500 hPa, there is less ice than the observations and it does not persist as long after peak convection. The modelled upper-tropospheric cloud fraction anomaly, however, is of a comparable magnitude and exhibits a similar longevity as the observations.

  • 27. Smith, D. M.
    et al.
    Scaife, A. A.
    Hawkins, E.
    Bilbao, R.
    Boer, G. J.
    Caian, Mihaela
    SMHI, Research Department, Climate research - Rossby Centre.
    Caron, L. -P
    Danabasoglu, G.
    Delworth, T.
    Doblas-Reyes, F. J.
    Doescher, Ralf
    SMHI, Research Department, Climate research - Rossby Centre.
    Dunstone, N. J.
    Eade, R.
    Hermanson, L.
    Ishii, M.
    Kharin, V.
    Kimoto, M.
    Koenigk, Torben
    SMHI, Research Department, Climate research - Rossby Centre.
    Kushnir, Y.
    Matei, D.
    Meehl, G. A.
    Menegoz, M.
    Merryfield, W. J.
    Mochizuki, T.
    Mueller, W. A.
    Pohlmann, H.
    Power, S.
    Rixen, M.
    Sospedra-Alfonso, R.
    Tuma, M.
    Wyser, Klaus
    SMHI, Research Department, Climate research - Rossby Centre.
    Yang, X.
    Yeager, S.
    Predicted Chance That Global Warming Will Temporarily Exceed 1.5 degrees C2018In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 45, no 21, p. 11895-11903Article in journal (Refereed)
  • 28. Smith, Doug M.
    et al.
    Scaife, Adam A.
    Boer, George J.
    Caian, Mihaela
    SMHI, Research Department, Climate research - Rossby Centre.
    Doblas-Reyes, Francisco J.
    Guemas, Virginie
    Hawkins, Ed
    Hazeleger, Wilco
    Hermanson, Leon
    Ho, Chun Kit
    Ishii, Masayoshi
    Kharin, Viatcheslav
    Kimoto, Masahide
    Kirtman, Ben
    Lean, Judith
    Matei, Daniela
    Merryfield, William J.
    Mueller, Wolfgang A.
    Pohlmann, Holger
    Rosati, Anthony
    Wouters, Bert
    Wyser, Klaus
    SMHI, Research Department, Climate research - Rossby Centre.
    Real-time multi-model decadal climate predictions2013In: Climate Dynamics, ISSN 0930-7575, E-ISSN 1432-0894, Vol. 41, no 11-12, p. 2875-2888Article in journal (Refereed)
    Abstract [en]

    We present the first climate prediction of the coming decade made with multiple models, initialized with prior observations. This prediction accrues from an international activity to exchange decadal predictions in near real-time, in order to assess differences and similarities, provide a consensus view to prevent over-confidence in forecasts from any single model, and establish current collective capability. We stress that the forecast is experimental, since the skill of the multi-model system is as yet unknown. Nevertheless, the forecast systems used here are based on models that have undergone rigorous evaluation and individually have been evaluated for forecast skill. Moreover, it is important to publish forecasts to enable open evaluation, and to provide a focus on climate change in the coming decade. Initialized forecasts of the year 2011 agree well with observations, with a pattern correlation of 0.62 compared to 0.31 for uninitialized projections. In particular, the forecast correctly predicted La Nia in the Pacific, and warm conditions in the north Atlantic and USA. A similar pattern is predicted for 2012 but with a weaker La Nia. Indices of Atlantic multi-decadal variability and Pacific decadal variability show no signal beyond climatology after 2015, while temperature in the Nio3 region is predicted to warm slightly by about 0.5 A degrees C over the coming decade. However, uncertainties are large for individual years and initialization has little impact beyond the first 4 years in most regions. Relative to uninitialized forecasts, initialized forecasts are significantly warmer in the north Atlantic sub-polar gyre and cooler in the north Pacific throughout the decade. They are also significantly cooler in the global average and over most land and ocean regions out to several years ahead. However, in the absence of volcanic eruptions, global temperature is predicted to continue to rise, with each year from 2013 onwards having a 50 % chance of exceeding the current observed record. Verification of these forecasts will provide an important opportunity to test the performance of models and our understanding and knowledge of the drivers of climate change.

  • 29. Sterl, Andreas
    et al.
    Bintanja, Richard
    Brodeau, Laurent
    Gleeson, Emily
    Koenigk, Torben
    SMHI, Research Department, Climate research - Rossby Centre.
    Schmith, Torben
    Semmler, Tido
    Severijns, Camiel
    Wyser, Klaus
    SMHI, Research Department, Climate research - Rossby Centre.
    Yang, Shuting
    A look at the ocean in the EC-Earth climate model2012In: Climate Dynamics, ISSN 0930-7575, E-ISSN 1432-0894, Vol. 39, no 11, p. 2631-2657Article in journal (Refereed)
    Abstract [en]

    EC-Earth is a newly developed global climate system model. Its core components are the Integrated Forecast System (IFS) of the European Centre for Medium Range Weather Forecasts (ECMWF) as the atmosphere component and the Nucleus for European Modelling of the Ocean (NEMO) developed by Institute Pierre Simon Laplace (IPSL) as the ocean component. Both components are used with a horizontal resolution of roughly one degree. In this paper we describe the performance of NEMO in the coupled system by comparing model output with ocean observations. We concentrate on the surface ocean and mass transports. It appears that in general the model has a cold and fresh bias, but a much too warm Southern Ocean. While sea ice concentration and extent have realistic values, the ice tends to be too thick along the Siberian coast. Transports through important straits have realistic values, but generally are at the lower end of the range of observational estimates. Exceptions are very narrow straits (Gibraltar, Bering) which are too wide due to the limited resolution. Consequently the modelled transports through them are too high. The strength of the Atlantic meridional overturning circulation is also at the lower end of observational estimates. The interannual variability of key variables and correlations between them are realistic in size and pattern. This is especially true for the variability of surface temperature in the tropical Pacific (El Nio). Overall the ocean component of EC-Earth performs well and helps making EC-Earth a reliable climate model.

  • 30.
    Thomas, Manu
    et al.
    SMHI, Research Department, Air quality.
    Devasthale, Abhay
    SMHI, Research Department, Atmospheric remote sensing.
    Koenigk, Torben
    SMHI, Research Department, Climate research - Rossby Centre.
    Wyser, Klaus
    SMHI, Research Department, Climate research - Rossby Centre.
    Roberts, Malcolm
    Roberts, Christopher
    Lohmann, Katja
    A statistical and process-oriented evaluation of cloud radiative effects in high-resolution global models2019In: Geoscientific Model Development, ISSN 1991-959X, E-ISSN 1991-9603, Vol. 12, no 4, p. 1679-1702Article in journal (Refereed)
  • 31. Tjernstrom, M
    et al.
    Zagar, M
    Svensson, G
    Cassano, J J
    Pfeifer, S
    Rinke, A
    Wyser, Klaus
    SMHI, Research Department, Climate research - Rossby Centre.
    Dethloff, K
    Jones, Colin
    SMHI, Research Department, Climate research - Rossby Centre.
    Semmler, T
    Shaw, M
    Modelling the arctic boundary layer: An evaluation of six arcmip regional-scale models using data from the Sheba project2005In: Boundary-layer Meteorology, ISSN 0006-8314, E-ISSN 1573-1472, Vol. 117, no 2, p. 337-381Article in journal (Refereed)
    Abstract [en]

    A primary climate change signal in the central Arctic is the melting of sea ice. This is dependent on the interplay between the atmosphere and the sea ice, which is critically dependent on the exchange of momentum, heat and moisture at the surface. In assessing the realism of climate change scenarios it is vital to know the quality by which these exchanges are modelled in climate simulations. Six state-of-the-art regional-climate models are run for one year in the western Arctic, on a common domain that encompasses the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment ice-drift track. Surface variables, surface fluxes and the vertical structure of the lower troposphere are evaluated using data from the SHEBA experiment. All the models are driven by the same lateral boundary conditions, sea-ice fraction and sea and sea-ice surface temperatures. Surface pressure, near-surface air temperature, specific humidity and wind speed agree well with observations, with a falling degree of accuracy in that order. Wind speeds have systematic biases in some models, by as much as a few metres per second. The surface radiation fluxes are also surprisingly accurate, given the complexity of the problem. The turbulent momentum flux is acceptable, on average, in most models, but the turbulent heat fluxes are, however, mostly unreliable. Their correlation with observed fluxes is, in principle, insignificant, and they accumulate over a year to values an order of magnitude larger than observed. Typical instantaneous errors are easily of the same order of magnitude as the observed net atmospheric heat flux. In the light of the sensitivity of the atmosphere-ice interaction to errors in these fluxes, the ice-melt in climate change scenarios must be viewed with considerable caution.

  • 32. Tjernström, M.
    et al.
    Zagar, M.
    Svensson, G.
    Dethloff, K.
    Rinke, A.
    Cassano, J.
    Pfeifer, S.
    Semmler, T.
    Jones, Colin
    SMHI, Research Department, Climate research - Rossby Centre.
    Wyser, Klaus
    SMHI, Research Department, Climate research - Rossby Centre.
    The Arctic boundary-layer in six different RCM compared to SHEBA observations (ARCMIP).2005In: Extended abstracts of a WMO/WCRP-sponsored Regional-Scale Climate Modelling Workshop [Elektronisk resurs] : high-resolution climate modelling : assessment, added value and applications, Lund, Sweden, 29 March-2 April 2004 / [ed] Lars Bärring & René Laprise, Lund: Department of Physical Geography & Ecosystems Analysis, Lund University , 2005, p. 44-45Conference paper (Other academic)
  • 33.
    Wyser, Klaus
    et al.
    SMHI, Research Department, Climate research - Rossby Centre.
    Jones, Colin
    SMHI, Research Department, Climate research - Rossby Centre.
    Modeled and observed clouds during Surface Heat Budget of the Arctic Ocean (SHEBA)2005In: Journal of Geophysical Research - Atmospheres, ISSN 2169-897X, E-ISSN 2169-8996, Vol. 110, no D9, article id D09207Article in journal (Refereed)
    Abstract [en]

    [1] Observed monthly mean cloud cover from the SHEBA site is found to differ by a substantial amount during winter depending on cloud observing instrument. This makes it difficult for climate modelers to evaluate modeled clouds and improve parameterizations. Many instruments and human observers cannot properly detect the thinnest clouds and count them as clear sky instead, resulting in too low cloud cover. To study the impact from the difficulties in the detection of thin clouds, we compute cloud cover in our model with a filter that removes the thinnest clouds. Optical thickness is used as a proxy to identify thin clouds as we are mainly interested in the impact of clouds on radiation. With the results from a regional climate model simulation of the Arctic, we can reproduce the large variability in wintertime cloud cover between instruments when assuming different cloud detection thresholds. During winter a large fraction of all clouds are optically thin, which causes the large sensitivity to filtering by optical thickness. During summer, most clouds are far above the optical thickness threshold and filtering has no effect. A fair comparison between observed and modeled cloud cover should account for thin clouds that may be present in models but absent in the observational data set. Difficulties with the proper identification of clouds and clear sky also has an effect on cloud radiative forcing. The derived clear-sky longwave flux at the surface can vary by some W m(-2) depending on the lower limit for the optical thickness of clouds. This impacts on the "observed'' LW cloud radiative forcing and suggests great care is needed in using satellite-derived cloud radiative forcing for model development.

  • 34.
    Wyser, Klaus
    et al.
    SMHI, Research Department, Climate research - Rossby Centre.
    Jones, Colin
    SMHI, Research Department, Climate research - Rossby Centre.
    Du, P.
    Girard, E.
    Willen, Ulrika
    SMHI, Research Department, Climate research - Rossby Centre.
    Cassano, J.
    Christensen, J. H.
    Curry, J. A.
    Dethloff, K.
    Haugen, J. -E
    Jacob, D.
    Koltzow, M.
    Laprise, R.
    Lynch, A.
    Pfeifer, S.
    Rinke, A.
    Serreze, M.
    Shaw, M. J.
    Tjernstrom, M.
    Zagar, M.
    An evaluation of Arctic cloud and radiation processes during the SHEBA year: simulation results from eight Arctic regional climate models2008In: Climate Dynamics, ISSN 0930-7575, E-ISSN 1432-0894, Vol. 30, no 2-3, p. 203-223Article in journal (Refereed)
    Abstract [en]

    Eight atmospheric regional climate models (RCMs) were run for the period September 1997 to October 1998 over the western Arctic Ocean. This period was coincident with the observational campaign of the Surface Heat Budget of the Arctic Ocean (SHEBA) project. The RCMs shared common domains, centred on the SHEBA observation camp, along with a common model horizontal resolution, but differed in their vertical structure and physical parameterizations. All RCMs used the same lateral and surface boundary conditions. Surface downwelling solar and terrestrial radiation, surface albedo, vertically integrated water vapour, liquid water path and cloud cover from each model are evaluated against the SHEBA observation data. Downwelling surface radiation, vertically integrated water vapour and liquid water path are reasonably well simulated at monthly and daily timescales in the model ensemble mean, but with considerable differences among individual models. Simulated surface albedos are relatively accurate in the winter season, but become increasingly inaccurate and variable in the melt season, thereby compromising the net surface radiation budget. Simulated cloud cover is more or less uncorrelated with observed values at the daily timescale. Even for monthly averages, many models do not reproduce the annual cycle correctly. The inter-model spread of simulated cloud-cover is very large, with no model appearing systematically superior. Analysis of the co-variability of terms controlling the surface radiation budget reveal some of the key processes requiring improved treatment in Arctic RCMs. Improvements in the parameterization of cloud amounts and surface albedo are most urgently needed to improve the overall performance of RCMs in the Arctic.

  • 35.
    Wyser, Klaus
    et al.
    SMHI, Research Department, Climate research - Rossby Centre.
    Jones, Colin
    SMHI, Research Department, Climate research - Rossby Centre.
    Willén, Ulrika
    SMHI, Research Department, Climate research - Rossby Centre.
    Modelling clouds and radiation in the Arctic2005In: Extended abstracts of a WMO/WCRP-sponsored Regional-Scale Climate Modelling Workshop [Elektronisk resurs] : high-resolution climate modelling : assessment, added value and applications / [ed] Lars Bärring & René Laprise, Lund: Department of Physical Geography & Ecosystems Analysis, Lund University , 2005, p. 128-Conference paper (Other academic)
  • 36.
    Wyser, Klaus
    et al.
    SMHI, Research Department, Climate research - Rossby Centre.
    Jones, Colin
    SMHI, Research Department, Climate research - Rossby Centre.
    Willén, Ulrika
    SMHI, Research Department, Climate research - Rossby Centre.
    Modelling clouds and radiation in the ARctic.2004In: 14th International conference on clouds and precipitation, 2004, p. 1442-1445Conference paper (Other academic)
  • 37.
    Wyser, Klaus
    et al.
    SMHI, Research Department, Climate research - Rossby Centre.
    Rummukainen, Markku
    SMHI, Research Department, Climate research - Rossby Centre.
    Strandberg, Gustav
    SMHI, Research Department, Climate research - Rossby Centre.
    Nordic regionalisation of a greenhouse-gas stabilisation scenario2006Report (Other academic)
    Abstract [en]

    The impact of a CO2 stabilisation on the Swedish climate is investigated with the regional climate model RCA3 driven by boundary conditions obtained from a global coupled climate system model (CCSM3). The global model has been forced with observed greenhouse gas concentrations from pre-industrial conditions until today’s, and with an idealised further increase until the stabilisation level is reached. After stabilisation the model integration continues for another 150+ years in order to follow the delayed response of the climate system over a period of time.Results from the global and regional climate model are compared against observations and ECMWF reanalysis for 1961-1990. For this period, the global model is found to be too cold over Europe and with a zonal flow from the North Atlantic towards Europe that is too strong. The climate of the driving global model controls the climate of the regional model and the same deviations from one are thus inherited by the other. We therefore analyse the relative climate changes differences, or ratios, of climate variables between future's and today's climate.Compared to pre-industrial conditions, the global mean temperature changes by about 1.5oC as a result of the stabilisation at 450 ppmv equivalent CO2. Averaged over Europe, the temperature change is slightly larger, and it is even larger for Sweden and Northern Europe. Annual mean precipitation for Europe is unaffected, but Sweden receives more precipitation under higher CO2 levels. The inter-annual and decadal variability of annual mean temperature and precipitation does not change with any significant degree.The changes in temperature and precipitation are not evenly distributed with the season: the largest warming and increased precipitation in Northern Europe occurs during winter months while the summer climate remains more or less unchanged. The opposite is true for the Mediterranean region where the precipitation decreases mostly during summer. This also implies higher summer temperatures, but changes in winter are smaller. No substantial change in the wind climate over Europe is found.

1 - 37 of 37
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.7
|