Change search
Refine search result
1 - 8 of 8
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Losjö, Katarina
    et al.
    SMHI, Professional Services.
    Södling, Johan
    SMHI, Professional Services.
    Wern, Lennart
    SMHI, Core Services.
    German, Jonas
    SMHI, Professional Services.
    Uppföljning av de svenska riktlinjerna för bestämning av dimensionerande flöden för dammanläggningar2019Report (Other academic)
    Abstract [en]

    Commissioned by Svenska kraftnät, the Swedish Meteorological and Hydrological Institute has carried out a follow-up study on the Swedish guidelines for determination of designs floods for dams. The main purpose was to investigate whether the Swedish meteorological and hydrological observation data show any signs of climatic change, which could affect the validity of the guidelines, formulated in 1990 (Flödeskommittén, 1990), later updated twice, in which the edition of 2015 (Svensk Energi et.al., 2015), emphasize the application also in a changing climate . The first follow-up study was performed in 2008 (Bergström m.fl., 2008), and the present study has used longer time series, both after 2008 and earlier than in the study of 2008.

    The guidelines prescribe that the calculation of design flood should be carried out using a hydrological model, and the following parameters are decided to be used in the simulations:

    • a snow cover with a statistical return period of 30 years
    • a 14-day precipitation sequence over 1000 km2
    • corrections of this sequence regarding the area of the catchment
    • corrections of the sequence regarding elevation above sea level and month of the year
    • extreme wind speed

    The present analyses have used long series of observation data from SMHI climatological and hydrological databases, mostly using the division of Sweden into five regions, described in the guidelines.

    • The analyses of the 14-day precipitation sequence has been made by analysing precipitation higher than 90 mm over 1000 km2 during 24 hours and 2 days during the period 1930-2018, as well as the 14-day precipitation sum 1961-2018. Also the highest point precipitation values have been analysed for the period 1945-2018.
    • It is not possible to find a trend in the data for neither of these analyses, in contrary to the findings in the previous follow-up, where an increase in the highest point precipitation was seen for the period 1961-2007.
    • Two adaptations of accumulated 14-day precipitation over three areas: 100, 100 and 10 000 km, to the areal correction curve in the guidelines show some discrepancies. However, the present analyses are made using another database than the basis of the original curve, and the results indicate that there is no immediate need for adjustment of the areal correction in the guidelines.
    • The distribution of high precipitation over the year has been studied, and it shows the same pattern as the monthly corrections of the sequence in the guidelines. The pattern is similar for the periods 1961-90 and 1991-2018.
    • The mean values of yearly largest snow cover have been analysed for the period 1904/05-2017/18. The results do not indicate any trend, only shorter time variations, neither for the whole period nor for the period 1961-2018. As the determination of snow cover with a return period of 30 years should be made using frequency analysis, the recommendations in the guidelines to use a long data period for the analyses are still valid.
    • An analysis of the daily highest flood peaks was made for data from 60 unregulated or very slightly regulated discharge stations. No long time trend that could reveal changes in flood risks can be seen in the results.
    • The geostrophic wind, an idealized average wind speed, computed from observations of air pressure, has been studied 1940-2017. For geostrophic wind of at least 25 m/s no signs of long term trend can be seen.
    • The analyses of the ratio between the design flood for flood design category I and the flood of a 100-year return period indicates increasing ratio with decreasing catchment area. This could

    The overall conclusion of the study is that there is presently no need for adjusting the parameters in the guidelines. The importance of using long time series for trend analyses is revealed.

  • 2.
    Olsson, Jonas
    et al.
    SMHI, Research Department, Hydrology.
    Berg, Peter
    SMHI, Research Department, Hydrology.
    Eronn, Anna
    SMHI, Research Department, Climate research - Rossby Centre.
    Simonsson, Lennart
    SMHI, Research Department, Hydrology.
    Södling, Johan
    SMHI, Professional Services.
    Wern, Lennart
    SMHI, Core Services.
    Yang, Wei
    SMHI, Research Department, Hydrology.
    Extremregn i nuvarande och framtida klimat Analyser av observationer och framtidsscenarier2018Report (Other academic)
    Abstract [sv]

    Studien har främst omfattat analyser av extrem korttidsnederbörd i observationer från SMHIs nät av automatiska meteorologiska stationer. Även analyser av korttidsnederbörd från kommunala mätare, manuella meteorologiska stationer, väderradar och klimatmodeller har genomförts. De huvudsakliga slutsatserna från detta uppdrag kan sammanfattas enligt följande.

    • En regionalisering av extrem korttidsnederbörd (skyfall) i Sverige gav fyra regioner: sydvästra (SV), sydöstra (SÖ), mellersta (M) och norra (N) Sverige. Ytterligare indelning kan göras men i denna studie prioriterades att ha regioner av denna storleksordning för att få ett ordentligt underlag för regional statistik. Regionaliseringen gäller enbart korttidsnederbörd, upp till maximalt 12 tim varaktighet.
    • Den regionala statistiken uppvisar tämligen distinkta geografiska skillnader, med högst värden i region SV och lägst i region N. Det är inte förvånande att vårt avlånga land uppvisar regionala skillnader då varmare och fuktigare luftmassor förekommer mer i söder än i norr, och därmed ökar förutsättningarna för intensiv nederbörd. Den regionala statistiken överensstämmer överlag väl med motsvarande statistik i våra grannländer.
    • Under perioden 1996-2017 finns inga tydliga tidsmässiga tendenser vad gäller skyfallens storlek och frekvens i de olika regionerna, utan dessa ligger överlag på en konstant nivå. Inte heller extrem dygnsnederbörd sedan 1900 uppvisar några tydliga tendenser på regional nivå. På nationell nivå indikeras en svag ökning av dels landets högsta årliga nederbörd sedan 1881, dels förekomsten av stora, utbredda 2-dygnsregn sedan 1961.
    • Skyfallsstatistik baserad på nederbördsobservationer från väderradar som justerats mot interpolerade stationsdata (HIPRAD) överensstämmer väl med stationsbaserad statistik för korta varaktigheter (upp till 2 tim) i södra Sverige. För längre varaktigheter och i mellersta och norra Sverige överskattar HIPRAD regnvolymerna.
    • Analyser av de senaste klimatmodellerna (Euro-CORDEX) indikerar en underskattning av extrema regnvolymer för korta varaktigheter (1 tim) men överlag en realistisk beskrivning av observerad skyfallsstatistik. Den framtida ökningen av volymerna beräknas ligga mellan 10% och 40% beroende på tidshorisont och koncentration av växthusgaser, vilket överlag ligger nära tidigare bedömningar.

    Både för bedömningen av regionala skillnader och historiska klimateffekter är det av största vikt att bibehålla, eller ännu hellre utöka, observationerna av korttidsnederbörd i Sverige. Nederbördsmätning via alternativa tekniker bör kunna användas i allt högre utsträckning framöver för förbättrad kunskap och statistik. Väderradar är redan etablerat och den digitala utvecklingen öppnar även möjligheter till insamling av nederbördsdata och relaterad information via mobilmaster, uppkopplade privata väderstationer, sociala medier, etc. Denna utveckling måste bevakas, utvärderas och i största möjliga utsträckning utnyttjas.

  • 3.
    Olsson, Jonas
    et al.
    SMHI, Research Department, Hydrology.
    Södling, Johan
    SMHI, Professional Services.
    Berg, Peter
    SMHI, Research Department, Hydrology.
    Wern, Lennart
    SMHI, Core Services.
    Eronn, Anna
    SMHI, Research Department, Climate research - Rossby Centre.
    Short-duration rainfall extremes in Sweden: a regional analysis2019In: Nordic Hydrology, ISSN 0029-1277, E-ISSN 1996-9694, Vol. 50, no 3, p. 945-960Article in journal (Refereed)
  • 4.
    Olsson, Jonas
    et al.
    SMHI, Research Department, Hydrology.
    Södling, Johan
    SMHI, Professional Services.
    Wetterhall, Fredrik
    SMHI, Research Department, Hydrology.
    Högupplösta nederbördsdata för hydrologisk modellering: en förstudie2013Report (Other academic)
    Abstract [en]

    Hydrological modeling at SMHI is generally done with a daily time step. However, today simulation and forecasting with a shorter time step is possible, through a spatially highly resolved hydrological model (S-HYPE) as well as high-resolution input data. In this preliminary study, different types of observation-based, high-resolution input data (mainly precipitation) have been invented, compiled and evaluated at different temporal and spatial scales: automatic stations, PTHBV, MESAN, radar data. A new product called PTHBV-radar has been developed by distributing the daily precipitation in PTHBV over the day using radar observations. The different types of data were tested in hydrological simulation by the HYPE model in a small catchment.For long accumulation times (year, month) PTHBV gives higher values than MESAN. Radar data have distinct artifacts, e.g. in the border between radars, but regional mean values agree with other sources. Concerning 1-h precipitation, the overall agreement with automatic station data is best in MESAN, followed by PTHBV-radar and radar. The spatial smoothing in MESAN however generates lower values of maximum intensities, in this respect PTHBV-radar and radar are closer to the station data.The hydrological 1-h simulations with MESAN and PTHBV-radar as input data improved performance evaluated on a daily basis, as compared with a reference simulation with PTHBV as input data. Using radar precipitation as input generated an overestimated discharge. The differences between 1-d and 1-h simulations were illustrated for single high flows and in terms of maximum daily values.

  • 5.
    Schöld, Sofie
    et al.
    SMHI, Core Services.
    Hellström, Sverker
    SMHI, Core Services.
    Ivarsson, Cajsa-Lisa
    SMHI, Professional Services.
    Kållberg, Per
    SMHI, Research Department, Meteorology.
    Lindow, Helma
    SMHI, Core Services.
    Nerheim, Signild
    SMHI, Professional Services.
    Schimanke, Semjon
    SMHI, Research Department, Oceanography.
    Södling, Johan
    SMHI, Professional Services.
    Wern, Lennart
    SMHI, Core Services.
    Vattenståndsdynamik längs Sveriges kust2018Report (Other academic)
    Abstract [sv]

    För att skapa ett samhälle väl anpassat till dagens och framtidens havsnivåer behövs besluts- och planeringsunderlag. Skyddsåtgärder och designnivåer för kustskydd är högaktuella frågor och många aktörer är intresserade av information kring potentiella maxnivåer för vattenstånd på olika tidshorisonter. SMHI har därför analyserat de mätdataserier för havsvattenstånd som idag finns tillgängliga från stationer längs Sveriges kust. Det primära syftet var att ta fram en metod för att beräkna det högsta möjliga havsvattenståndet vid mätstationer längs Sveriges kust. Metoden beskrivs i Schöld m.fl.(2017).

    I föreliggande rapport beskrivs allmänt havsnivåer, mätdata, modeller och de resultat som erhölls från olika analyser av mätdata. Mätstationerna indelades i åtta olika kustområden inom vilka vattenståndet samvarierar. Det väder och de specifika stormbanor, som under de senaste 40 åren orsakat de högsta stormfloderna på olika platser längs den svenska kusten kartlades, och vattenståndsdynamiken vid olika mätstationer studerades.

    Kortvariga höjningar av vattenståndet undersöktes, både med avseende på kraftiga vattenståndshöjningar orsakade av passerande väderssystem och med avseende på förhöjda utgångslägen, som i sin tur kan bidra till att stormfloder blir extra höga.

    Det högsta beräknade havsvattenstånd som presenteras är de högsta möjliga stormfloder som skulle kunna inträffa baserat på empiriska analyser av mätdata vid de olika stationerna. Kända extrema händelser, som ägt rum före det att vattenståndet började registreras, ingår inte eftersom de inte har kunnat kvantifieras. Framtida förändringar av medelvattenståndet orsakade av den globala klimatförändringen behandlas inte i denna rapport.

    Resultaten från studien visar att vattennivåerna i Östersjön generellt blir som högst i Bottenviken och i de södra delarna. De höga vattenstånden i större delen av Östersjön är inte lika höga som på västkusten och i Öresund. I Östersjön förefaller också utgångsläget, havsnivån före stormen, utgöra en större del av den resulterande vattenståndshöjningen. Vid flera stationer i de centrala delarna av Östersjön är havsnivån före storm i stort sett hälften av det högsta beräknade havsvattenståndet. Längs västkusten är istället de nettohöjningar som orsakas av rena stormeffekter den viktigaste stormflodskomponenten. Lokala förhållanden, till exempel om stationen är belägen vid en öppen, rak kust eller inne i en vik, påverkar hur högt vattenståndet kan förväntas bli på en viss plats.

    Analyserna visar att stormfloder skulle kunna bli omkring 20-40 cm högre än hittills observerade maximala nivåer i olika kustområden. En osäkerhetsmarginal på runt +15 cm är lämplig att addera, särskilt i de områden där tidvatten förekommer.

  • 6.
    Schöld, Sofie
    et al.
    SMHI, Core Services.
    Ivarsson, Cajsa-Lisa
    SMHI, Professional Services.
    Nerheim, Signild
    SMHI, Professional Services.
    Södling, Johan
    SMHI, Professional Services.
    Beräkning av högsta vattenstånd längs Sveriges kust2018Report (Other academic)
    Abstract [sv]

    I rapporten redovisas hur en metod framtagits för att kunna skatta de allra högsta havsvattenstånd som kan uppträda vid de mätstationer för havsvattenstånd som finns längs Sveriges kust. Metoden är generell och principerna kan därför tillämpas på mätdataserier från olika platser. För att kunna tillämpa metoden måste dock mätdataserien ha en viss minimilängd och tidsupplösning. Resultaten som tas fram är empiriska, vilket betyder att de baseras på tillgängliga mätdata.

    I analysen delades data upp i två delar; det genomsnittliga vattenståndet före en högvattenhändelse och nettohöjningen under en högvattenhändelse. Dessa delar benämns havsnivå före storm respektive nettohöjning, i enlighet med:

    stormflod = havsnivå före storm + nettohöjning

    Nivån på stormfloden är det högsta uppmätta havsvattenståndet under respektive högvattenhändelse. I analysen har även högvattenhändelser som inte förknippas med stormar inkluderats. Många av de högsta stormfloderna har inträffat när havsnivån före storm är förhöjd jämfört med medelvattenståndet, framförallt i stora delar av Östersjön. I analysen ingår samtliga högvattenhändelser från vilka det finns tillgänglig mätdata, även sådana som startat från ett lågt utgångsläge.

    I analysen indelades mätstationerna i olika kustområden och samvariationen mellan mätstationerna undersöktes. För varje enskild station, där havsvattenstånd observeras, har högsta havsnivå före storm och högsta nettohöjning framtagits. Den högsta havsnivån före storm som uppmätts inom kustområdet bedömdes gälla för alla mätstationer inom området. Det högsta beräknade havsvattenståndet definierades som kustområdets högsta havsnivå före storm plus mätstationens högsta nettohöjning.

    Tidvatteneffekten har inte beaktats särskilt, utan är i viss mån inkluderad i nettohöjningen. Denna förenkling beskrivs närmare i Schöld m fl. (2017).

    Analysen visade att:

    • samvariationen inom kustområden är mycket hög för vanligt förekommande vattenstånd.
    • högvattenhändelser förekommer oftare i vissa kustområden.
    • de högsta vattenstånden kan variera mycket, även mellan stationer inom samma kustområde.
    • havsnivån före storm är en mer betydande stormflodskomponent i Östersjön och mindre betydande i Skagerrak-Kattegatt.
    • havsnivån före storm behöver identifieras så att den inte är påverkad av själva stormhändelsen.
    • det är lämpligt att uppdatera det högsta beräknade havsvattenståndet regelbundet,särskilt efter att nya rekordhöga stormfloder inträffat.

    Vi valde att definiera havsnivån före storm som ett medelvärde över sju dygn, 48 timmar före stormflodens maximum. Metodiken avser nivåer ovanpå ett gällande medelvattenstånd. Framtida förändringar av medelvattenståndet orsakade av den globala klimatförändringen behandlas inte i denna rapport. Tillämpningen av metoden i ett framtida klimat beskrivs i Nerheim m fl. (2017).

  • 7.
    Sjökvist, Elin
    et al.
    SMHI, Professional Services.
    Axén Mårtensson, Jenny
    SMHI, Core Services.
    Dahné, Joel
    SMHI, Professional Services.
    Köplin, Nina
    SMHI.
    Björck, Emil
    SMHI, Professional Services.
    Nylén, Linda
    SMHI, Professional Services.
    Tengdelius Brunell, Johanna
    SMHI, Professional Services.
    Nordborg, Daniel
    SMHI.
    Hallberg, Kristoffer
    SMHI, Professional Services.
    Södling, Johan
    SMHI, Professional Services.
    Klimatscenarier för Sverige: Bearbetning av RCP-scenarier för meteorologiska och hydrologiska effektstudier2015Report (Other academic)
    Abstract [en]

    I studien används två RCP-scenarier, RCP4.5 som bygger på låga utsläpp, och RCP8.5 med höga utsläpp. Båda har tillämpats med 9 olika globala klimatmodeller på olika forskningsinstitut runt om i världen. De globala dataseten har bearbetats med den regionala klimatmodellen RCA4 på Rossby Centre vid SMHI. Att samtliga dataset bearbetats av endast en regional klimatmodell ger en osäkerhet i resultaten. Den regionala modellen jämfördes därför med två andra modeller och en tendens för något blötare klimatsignal i norra Sverige påvisades. Användning av andra regionala modeller för samma ensemble av globala modeller och strålningsdrivningsscenarier kan därför komma att uppvisa en något torrare klimatsignal. SMHI har tidigare utarbetat den s.k. DBS-metoden (Distribution Based Scaling) för bearbetning av klimatscenariodata för hydrologiska effektstudier. Bearbetad klimatdata från klimatmodellerna används som drivdata för hydrologisk modellering samt statistiska analyser av meteorologisk och hydrologisk klimatdata. I studien har två hydrologiska modeller använts parallellt. Varje klimatscenario har bearbetats separat men resultaten presenteras som ensembler av RCP4.5 och 8.5. Analys av årsmedeltemperatur visar på ökad temperatur för hela Sverige i framtiden, och störst ökning sker med det högintensiva scenariot RCP8.5. Skillnaden mellan referensperioden 1961-1990 och slutet av seklet är från 4 graders ökning i södra Sverige till upp mot 6 grader längst i norr. RCP4.5, strålningsdrivningsscenariot som inkluderar utsläppsbegränsningar, visar generellt 2 grader lägre uppvärmning. Nederbörden väntas öka i framtida klimat, RCP4.5 visar på 10-30% ökning och RCP8.5 15-40% ökning. Ökningen är störst i norra Sverige. Medeltillrinningen väntas öka i hela landet utom i sydöstra Sverige, där det sker en minskning i tillrinningen. Störst ökning sker i landets norra delar. RCP8.5 ger det mest extrema resultatet både där tillrinningen ökar och där den minskar. Extrema tillrinningar, 100-årsflöden, väntas öka i älvar i södra Sverige mot slutet av seklet. I nordliga älvar sker en oväsentlig ökning eller till och med en minskning av 100-årsflödets storlek. Arbetet med nedskalning av RCP-scenarier har resulterat i en gedigen databas med meteorologiska och hydrologiska klimatindex. Syftet med databasen är fortsatta studier inom framtida klimat på läns- och kommunnivå. För sådana studier är det viktigt att ha kunskaper om osäkerheten i resultaten, vilka beskrivs i denna rapport.

  • 8.
    Södling, Johan
    et al.
    SMHI, Professional Services.
    Nerheim, Signild
    SMHI, Professional Services.
    Statistisk metodik för beräkning av extrema havsvattenstånd2018Report (Other academic)
    Abstract [sv]

    Som ett led i arbetet att förbättra metoderna för planeringsunderlag gällande extrema havsvattenstånd har SMHI gjort en inventering av statistiska metoder för extremvärdesanalys. Metoderna är vanligt förekommande när olika dimensioneringsunderlag tas fram. För att ta fram statistik med hög tillförlitlighet för händelser som har låg sannolikhet (hög återkomsttid) har dock metoderna begränsad användning.

    Tre huvudsakliga metoder har applicerats på SMHI:s havsvattenståndsdata. Den mest vanliga, Blockmaximum-metoden, används vanligtvis på årshögsta vattenstånd. POT – metoden (Peak Over Threshold), använder fler data och är inte lika vanlig. I Norge används en variant av POT – metoden, den så kallade ACER-metoden (Average Conditional Exceedance Rate). Den är mycket lämplig för att ta fram värden för lägre återkomsttider, och är förhållandevis robust när data läggs till vartefter.

    Metodernas lämplighet och känslighet utvärderades för extrema havsvattenstånd, alltså havsvattenstånd med höga återkomsttider(låg sannolikhet). Slutsatsen är att det inte går att välja en metod som överlägsen den andra, och att kunskap om den aktuella platsens oceanografiska förhållanden behövs för att utvärdera resultatens rimlighet. I alla analyser av extrema havsvattenstånd är det viktigt att beakta datakvalité och dataseriens längd. Resultat bör redovisas med konfidensintervall.

    Blockmaximum-metoden testades med olika fördelningar. Gumbel-fördelning visar sig kunna ge orimliga nivåer för vattenståndsextremer och rekommenderas därför inte. GEV (Generalized Extreme Value) och Log-normal fördelning används med fördel i kombination.POT-metoder tar till vara fler händelser än de riktigt extrema, men resultaten som ges har väldigt stora konfidensintervall som växer för låg sannolikhet. Om tröskeln sätts för låg är det inte extremvattenstånd som utvärderas.

    Som en följd av denna analys bestämdes att andra metoder behöver tas fram för att studera de högsta havsvattenstånden längs Sveriges kust. I Schöld m.fl. (2017) redovisas hur man kan gå till väga för att ta fram högsta beräknade havsvattenstånd utifrån befintliga data.

1 - 8 of 8
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.8
|