Change search
Refine search result
1 - 26 of 26
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Andersson, Lotta
    SMHI, Core Services.
    Experiences of the use of riverine nutrient models in stakeholder dialogues2004In: International Journal of Water Resources Development, ISSN 0790-0627, E-ISSN 1360-0648, Vol. 20, no 3, p. 399-413Article in journal (Refereed)
    Abstract [en]

    The potential of models to assist in stakeholder dialogues is assessed regarding options for the reduction of riverine nitrogen loads in a 357-km(2) river basin in south central Sweden. Scenarios of remedies based on stakeholders' suggestions were used to stimulate discussions in a panel incorporating farmers, municipality staff, politicians and technical advisers. The farmers perceived the model-derived discussion material as valuable, although only average conditions at a generic farm were simulated. The panellists demonstrated caution when using regionalized information, but did not request quantitative uncertainty estimates. There was a desire to have phosphorus included in the model-derived discussion material and to include the impacts of other environmental goals than 'no eutrophication'. The inclusion of different stakeholder groups in the panel sessions was acknowledged as a way to establish a shared perception of the existing environmental status of the basin and to define the pros and cons of various remedies. This was seen by the panellists as a way to facilitate local implementation of the Water Framework Directive (WFD). Use of model-stimulated local stakeholder panels is also a way to ensure that involved stakeholders perceive local environmental goals as realistic and acceptable. However, to establish river-basin stakeholder dialogues as part of the nation-wide implementation of the WFD directive, it will be necessary to develop a model approach that can be used by local advisers. Perhaps the most critical factor is the moderators' ability to provide an atmosphere of mutual respect between all those involved in contrast to performing one-way lectures to the participants.

  • 2.
    Andersson, Lotta
    et al.
    SMHI, Core Services.
    Arheimer, Berit
    SMHI, Research Department, Hydrology.
    Consequences of changed wetness on riverine nitrogen - human impact on retention vs. natural climatic variability2001In: Regional Environmental Change, ISSN 1436-3798, E-ISSN 1436-378X, Vol. 2, no 3, p. 93-105Article in journal (Refereed)
    Abstract [en]

    The HBV-N model was used for a scenario analysis of changes in nitrogen retention and transport caused by alterations of wetness due to land drainage, lowering of lakes, building of dams and climatic variability in a river basin in south-central Sweden (1885-1994). In general, dams were situated in locations more favourable for retention, compared to the lowered lakes. Rather modest conversions of water bodies only changed nitrogen transport by about 3%. The 180-times-larger increase of (mainly) tile-drained agricultural land had, according to simulations, increased the nitrogen transport by 17%, due to reduced retention. However, compared to human-induced alteration of the landscape N retention, the choice of 10-year periods of climatological data had the overriding effect on the calculated nitrogen transport. Weather-induced variations resulted in a 13% difference in nitrogen retention between various 10-year periods. When the model was driven by climatological data from the driest 10-year period (1905-1914), the estimated average annual load was only half of that obtained with climatological data from the wettest 10-year period (1975-1984).

  • 3.
    Andersson, Lotta
    et al.
    SMHI, Core Services.
    Arheimer, Berit
    SMHI, Research Department, Hydrology.
    Modelling of human and climatic impact on nitrogen load in a Swedish river 1885-19942003In: Hydrobiologia, ISSN 0018-8158, E-ISSN 1573-5117, Vol. 497, no 1-3, p. 63-77Article in journal (Refereed)
    Abstract [en]

    Changes in environmental conditions within a river basin in South Central Sweden (1400 km(2)) and impacts on riverine nitrogen (N) transport were evaluated. A historical database was compiled and the process-based HBV-N model used to estimate flow normalised N loads in 1885, 1905, 1927, 1956, 1976, and 1994, using a standard climatological record (1985-1994). The study shows the value of process-based modelling in environmental impact assessment, by making it possible to assess and integrate the effect of a number of factors, both with regard to human impact and natural climatic variability. Factors taken into account include: the effects of land use, agricultural practices, atmospheric deposition, human dietary intake, use of flush toilets, lowering of lakes, building of dams, and climatic variability. For all years studied, agriculture was the overriding source of N, and changes in riverine N over time mainly reflected changes in land use and agricultural practices. In spite of decreasing N-leaching from agriculture, the net load remained fairly constant between 1885 and 1927, due to reduced N retention. Drainage of agricultural land had a dominating impact on reducing N retention, which increased the N loads, while the effects of the lowering of lake levels and dam building were less pronounced. Household N emission per capita was higher in 1994 than in 1927, as the increased consumption of meat and dairy products alone resulted in a higher increase of the emission than was compensated for with wastewater treatment improvement. In addition, introduction of flush toilets increased the emission from households. In total, the net load in 1976 was twofold higher than that in 1885, 1905 and 1927, due to increased leaching from agriculture, wastewater emission, and atmospheric deposition on lake surfaces. Finally, the impact of climatological variability was assessed, using a 110-yr climatological record. The choice of 10-yr period of climatological data was the factor that had the largest impact on calculated N load.

  • 4.
    Andersson, Lotta
    et al.
    SMHI, Research Department, Hydrology.
    Bohman, Anna
    Linköpings universitet.
    van Well, Lisa
    Statens geotekniska institut.
    Jonsson, Anna
    Linköpings universitet.
    Persson, Gunn
    SMHI, Professional Services.
    Farelius, Johanna
    Enheten för samhällsekonomiska analyser vid Naturvårdsverket.
    Underlag till kontrollstation 2015 för anpassning till ett förändrat klimat2015Report (Other academic)
    Abstract [en]

    As the climate changes, actors on all levels and in all sectors will be affected. Thus it is imperative that authorities, municipalities, businesses and individual property owners all take action. Flooding, heat waves, landslides and erosion are only a few examples of the challenges that that society faces and needs to prepare for. Sweden must adapt to the impacts of a changing climate, as well as the indirect effects of climate change impacts in other parts of the world. The costs of adaptation can be high, but the European Commission, among others, has deemed that it still pays to adapt in relation to the costs incurred if no action is taken. Climate adaptation initiatives in Sweden have advanced significantly in recent years. Notable examples include governmental missions for a national elevation database, landslide risk mapping in the Göta Älv River Valley, the Swedish drinking water investigation, the County Administrative Boards’ regional climate change action plans, and the establishment of the National Knowledge Centre for Climate Adaptation. The Swedish Meteorological and Hydrological Institute’s mission to survey, analyse and follow-up on climate adaptation work in Sweden has shown that there is still a considerable need for further measures. This report provides proposals for a road map for climate adaptation in Sweden and concludes that climate adaptation is best conducted in a long-term manner, that roles and responsibilities should be made more transparent, and that better coordination among the many actors involved in climate adaptation is necessary. The most important conclusions for continued work are:  Laws and regulations need to be adapted; roles and responsibilities as well as strategies and goals should be made clearer.  Priority and funding should be given to research and development measures that fill an identified knowledge-gap, including long-term monitoring.  Knowledge and decision support as well as prognoses and warning systems should be more accessible.  There is a need to outline how the costs of adaptation should be distributed among actors and how resources for prioritised measures can be guaranteed. This mission has compiled knowledge of the current and future risks and consequences for society of a changing climate, such as effects on vital societal functions and human health. The mission has also surveyed the work that has been done since the publication of the final report of the Swedish Commission on Climate and Vulnerability in 2007. From this background material our goal has been to describe the gaps and challenges and provide suggestions for how adaptation can be approached in various sectors of society. The EU Strategy on Adaptation to Climate Change has been an important point of departure. The work has been performed in cooperation with national and regional authorities, municipalities, researchers, sectoral organisations and representatives of the private sector This report is comprised of a main report and 18 annexes. Chapter 3 of the main report is a synthesis of all of the proposals made throughout the document and as such can be seen as a road map to ensure that Sweden adapts to a changing climate.

  • 5.
    Andersson, Lotta
    et al.
    SMHI, Core Services.
    Bonell, M
    Moody, D W
    Special thematic issue: Hydrology for the environment. life and policy (Help) Programme - Foreword2004In: International Journal of Water Resources Development, ISSN 0790-0627, E-ISSN 1360-0648, Vol. 20, no 3, p. 267-274Article in journal (Other academic)
  • 6.
    Andersson, Lotta
    et al.
    SMHI, Core Services.
    Olsson, Johanna Alkan
    Arheimer, Berit
    SMHI, Research Department, Hydrology.
    Jonsson, Anna
    Use of participatory scenario modelling as platforms in stakeholder dialogues2008In: Water S.A., ISSN 0378-4738, E-ISSN 1816-7950, Vol. 34, no 4, p. 439-447Article in journal (Refereed)
    Abstract [en]

    A participatory methodology, based on dialogues between stakeholders and experts has been developed and tested in the drainage area to Kaggebo Bay in the Baltic Sea. This study is focused on the EU Water Framework Directive, with emphasis on reduction of eutrophication. The drainage area is included in the WFD administrative area of the Motala Strom River basin. A similar approach is now applied in a recently initiated project in the Thukela River basin, with focus on impacts of climate change on water resources. The methodology is based on the idea that a catchment model serves as a platform for the establishment of a common view of present conditions and the causes behind these conditions. In the following steps, this is followed by model-assisted agreement on environmental goals (i.e. what do we want the future to look like?) and local agreement on a remedy or mitigation plans in order to reduce environmental impact (e. g. eutrophication); alternatively to adapt to conditions that cannot be determined by local actions (e. g. climate change). By involving stakeholder groups in this model-supported stepwise process, it is ensured that all stakeholder groups involved have a high degree of confidence in the presented model results, and thereby enable various actors involved to share a common view, regarding both present conditions, goals and the way to reach these goals. Although this is a process that is time-(and cost-) consuming, it is hypothesised that the use of this methodology is two-pronged: it increases the willingness to carry out remedies or necessary adaptations to a changing environment, and it increases the level of understanding between the various groups and therefore ameliorates the potential for future conflicts. Compared to traditional use of model results in environmental decision-making, the experts' role is transformed from a one-way communication of final results to assistance in the various steps of the participatory process.

  • 7.
    Andersson, Lotta
    et al.
    SMHI, Research Department, Hydrology.
    Persson, Gunn
    SMHI, Professional Services.
    Bergström, Sten
    SMHI, Core Services.
    Ohlsson, Alexandra
    SMHI, Professional Services.
    Risker, konsekvenser och sårbarhet för samhället av förändrat klimat – en kunskapsöversikt: Flertalet av de i rapporten refererade myndigheterna och organisationerna har varit aktiva i framtagandet av texterna: Materialet har sammanställts av:2015Report (Other academic)
    Abstract [sv]

    Regeringen gav år 2014 SMHI i uppdrag att utarbeta underlag till Kontrollstation2015 för anpassning till ett förändrat klimat. Som en del av uppdraget ingick att göra en uppdaterad sammanställning av kunskapen om nuvarande och framtida risker och konsekvenser, främst med utgångspunkt från Klimat- och sårbarhetsutredningens slutbetänkande (SOU 2007:60). I föreliggande rapport beskrivs kunskapsläget kring det svenska samhällets sårbarhet för ett förändrat klimat. Klimatförändringarna påverkar hela samhället. Generellt kan sägas att medvetenheten om klimatförändringarnas påverkan har ökat, men det saknas en del kunskap och verktyg, främst på den lokala nivån. Översvämningsriskerna kring sjöar och längs vattendrag ökar, vilket kan påverka bebyggelse och infrastruktur. Risken för ras och skred tros också öka, främst i landets västra och sydvästra delar samt områden längs östra kusten. Erosion längs vattendrag, sjöar och kuster kan komma att öka i delar av landet. Vattentillgång och -kvalitet kommer att påverkas av förändrade nederbördsmönster, ökad spridning av föroreningar samt ökade mikrobiologiskarisker. Energisystemet kommer att utsättas för större påfrestningar, särskilt av extrema väderhändelser. Kunskapen har ökat kring klimatförändringarnas effekter på energisystemet, men det kvarstår kunskapsluckor relaterade till extremväder och anpassningsåtgärder. Kunskap och medvetenhet om klimatförändringarnas påverkan på kommunikationerna i samhället har ökat, men det finns fortfarande behov av mer utredning och verktyg. Förutsättningarna för jordbruket förbättras i huvudsak, med möjlighet till ökade skördar och nya grödor. Samtidigt kommer fler skadegörare och ogräs in. Nya behov av bevattning kan uppstå och markavvattningen kan behöva en översyn. Eventuellt minskat utbud av livsmedel på världsmarknaden, kan innebära ökad efterfrågan på svenska livsmedel. Samtidigt går Sverige idag mot ökat importberoende. Även djurhållningen står inför stora utmaningar. Å ena sidan kan djuren gå ute under en längre del av året och möjligheterna att vara självförsörjande med foder ökar. Men det varmare klimatet medför också risk för att nya djursjukdomar uppträder. Konsekvenserna för den svenska skogen och skogsbruket kommer att bli betydande. Ökad tillväxt ger större virkesproduktion, men ökad frekvens och omfattning av skador från främst insekter, svampar och storm samt blötare skogsmark kan föra med sig stora kostnader. Stora regionala skillnader i utbudet av kommersiellt virke kan påverka svensk skogsindustri. Förändrade förutsättningar är också att vänta för fiskbestånden. Nya fiskarter i svenska vatten kan föra med sig nya smittor och konkurrera ut befintliga arter i känsliga ekosystem. Renskötseln i Sverige kommer att allvarligt påverkas av klimatförändringarna och effekterna utgör stora utmaningar. Klimatförändringarna ger både positiva och negativa effekter för turismen. Det finns hinder för anpassningskapaciteten, bland annat bristande organisering av besöksnäringen. Människors och djurs hälsa kan påverkas direkt av extrema väderhändelser. Ett varmare klimat ger även upphov till förändrade smittspridningsmönster och nya sjukdomar kan nå Sverige. Förändringar i luft, vatten och mark, orsakade av klimatförändringar, kan också påverka hälsotillståndet för djur och människor. På nationell nivå är kunskaperna om risker för bebyggelse tillräckliga för att rekommendera åtgärder, men det saknas lokala beslutsunderlag. För kulturarvet behöver kunskapen öka. Klimatförändringarna förväntas leda till förändringar för den biologiska mångfalden och ekosystemen. Det påverkar förmågan att nå flera av Sveriges miljömål och behöver ses i samband med andra miljöhot. Det finns bland annat behov av regionala kartläggningar av hur arter, ekosystem, naturtyper och biologisk mångfald kan påverkas. Risk- och säkerhetsperspektivet har växt fram under senare år, men präglas av utmaningar avseende metoder. Mycket få studier behandlar förhållanden i Sverige.

  • 8.
    Andersson, Lotta
    et al.
    SMHI, Core Services.
    Rosberg, Jörgen
    SMHI, Research Department, Hydrology.
    Pers, Charlotta
    SMHI, Research Department, Hydrology.
    Olsson, Jonas
    SMHI, Research Department, Hydrology.
    Arheimer, Berit
    SMHI, Research Department, Hydrology.
    Estimating catchment nutrient flow with the HBV-NP model: Sensitivity to input data2005In: Ambio, ISSN 0044-7447, E-ISSN 1654-7209, Vol. 34, no 7, p. 521-532Article in journal (Refereed)
    Abstract [en]

    The dynamic catchment model HBV-N has been further developed by adding routines for phosphorus transport and is now called the HBV-NP model. The model was shown to satisfactorily simulate nutrient dynamics in the Ronnea catchment (1 900 km(2)). Its sensitivity to input data was tested, and results demonstrated the increased sensitivity to the selection of input data on a subcatchment scale when compared with the catchment scale. Selection of soil and land use databases was found to be critical in some subcatchments but did not have a significant impact on a catchment scale. Although acceptable on a catchment scale, using templates and generalization, with regards to emissions from point sources and rural households, significantly decreased model performance in certain subcatchments when compared with using more detailed local information. A division into 64 subcatchments resulted in similar model performance at the catchment outlet when compared with a lumped approach. Adjusting the imported matrixes of the regional leaching of nitrogen, from agricultural land, against mean subcatchment water percolation did not have a significant impact on the model performance.

  • 9.
    Andersson, Lotta
    et al.
    SMHI, Research Department, Hydrology.
    Samuelsson, Patrick
    SMHI, Research Department, Climate research - Rossby Centre.
    Kjellström, Erik
    SMHI, Research Department, Climate research - Rossby Centre.
    Assessment of climate change impact on water resources in the Pungwe river basin2011In: Tellus. Series A, Dynamic meteorology and oceanography, ISSN 0280-6495, E-ISSN 1600-0870, Vol. 63, no 1, p. 138-157Article in journal (Refereed)
  • 10.
    Andersson, Lotta
    et al.
    SMHI, Core Services.
    Wilk, Julie
    Graham, Phil
    SMHI, Research Department, Climate research - Rossby Centre.
    Warburton, Michele
    Design and test of a model-assisted participatory process for the formulation of a local climate adaptation plan2013In: Climate and Development, ISSN 1756-5529, E-ISSN 1756-5537, Vol. 5, no 3, p. 217-228Article in journal (Refereed)
    Abstract [en]

    This article presents the design and testing of a model-assisted participatory process for the formulation of a local adaptation plan to climate change. The pilot study focused on small-scale and commercial agriculture, water supply, housing, wildlife, livestock and biodiversity in the Thukela River basin, KwaZulu-Natal, South Africa. The methodology was based on stakeholders identifying and ranking the severity of climate-related challenges, and downscaled stakeholder-identified information provided by modellers, with the aim of addressing possible changes of exposure in the future. The methodology enables the integration of model-based information with experience and visions based on local realities. It includes stakeholders' own assessments of their vulnerability to prevailing climate variability and the severity, if specified, of climate-related problems that may occur more often in the future. The methodology made it possible to identify the main issues to focus on in the adaptation plan, including barriers to adaptation. We make recommendations for how to design a model-assisted participatory process, emphasizing the need for transparency, to recognize the interests of the stakeholders, good advance planning, local relevance, involvement of local champions, and adaptation of Information material to each group's previous experience and understanding.

  • 11.
    Andersson, Lotta
    et al.
    SMHI, Research Department, Hydrology.
    Wilk, Julie
    SMHI, Research Department, Hydrology.
    Graham, Phil
    SMHI, Professional Services.
    Warburton, Michele
    School of Bioresources Engineering & Environmental Hydrology University of KwaZulu-Natal Private Bag X01, Scottsville, 3209 South Africa.
    Local Assessment of Vulnerability to Climate Change Impacts on Water Resources in the Upper Thukela River Basin, South Africa - Recommendations for Adaptation2009Report (Other academic)
    Abstract [en]

    This report originates from a project entitled Participatory Modelling for Assessment of Local Impacts of Climate Variability and Change on Water Resources (PAMO), financed by the Swedish Development Agency and Research Links cooperation (NRF and the Swedish Research Council). The project is based on interactions between stakeholders in the Mhlwazini/Bergville area of the Thukela River basin, climate and water researchers from the University of KwaZulu-Natal (Pietermaritzburg Campus) and the Swedish Meteorological and Hydrological Institute (SMHI) during a series of workshops held in 2007-2009. Between the workshops, the researcher’s compiled locally relevant climate change related information, based on requests from the workshop participants, as a basis for this adaptation plan. The aim is to provide a local assessment of vulnerability to climate change impacts on water resources and adaptation strategies. The assessment identifies existing climate-water related problems, current adaptation strategies and recommendations for future action based on likelihoods for change and the severity if such changes will occur.Denna rapport har sitt ursprung i projektet Deltagande modellering för bedömning av lokal inverkan av klimatvariabilitet och förändringar på vattenresurser (PAMO), finansierat av Sida och Research Links (NFR i Sydafrika, samt VR i Sverige). Projektet baseras på interaktion mellan vattenintressenter i Mhlwazini/Bergville området av Thukelas avrinningsområde och klimat och vattenforskare från University of KwaZulu-Natal (Pietermaritzburg Campus) och SMHI under en serie av workshops under 2007-2009. Mellan workshops har forskarna tagit fram klimatförändringsrelaterad information med lokal relevans, baserat på önskemål från deltagarna i workshops. Denna information har sedan använts som ett underlag till framtagandet av en anpassningsplan. Syftet är att tillhandahålla en lokal bedömning av sårbarhet relaterad till påverkan på vattenresurser av klimatförändringar, samt en lokalt föreslagen anpassningsstrategi. Existerande klimatrelaterade problem och nuvarande anpassningsstrategier har identifierats och rekommendationer för framtida aktioner, baserade på sannolikhet för förändringar och kännbarheten av konsekvenserna om dessa förändringar inträffar.

  • 12.
    Andersson, Lotta
    et al.
    SMHI, Core Services.
    Wilk, Julie
    Todd, Martin C.
    Hughes, Denis A.
    Earle, Anton
    Kniveton, Dominic
    Layberry, Russet
    Savenije, Hubert H. G.
    Impact of climate change and development scenarios on flow patterns in the Okavango River2006In: Journal of Hydrology, ISSN 0022-1694, E-ISSN 1879-2707, Vol. 331, no 1-2, p. 43-57Article in journal (Refereed)
    Abstract [en]

    This paper lays the foundation for the use of scenario modelling as a tool for integrated water resource management in the Okavango River basin. The Pitman hydrological model is used to assess the impact of various development and climate change scenarios on downstream river flow. The simulated impact on modelled river discharge of increased water use for domestic use, livestock, and informal irrigation (proportional to expected population increase) is very limited. Implementation of all likely potential formal irrigation schemes mentioned in available reports is expected to decrease the annual flow by 2% and the minimum monthly flow by 5%. The maximum possible impact of irrigation on annual average flow is estimated as 8%, with a reduction of minimum monthly flow by 17%. Deforestation of all areas within a 1 km buffer around the rivers is estimated to increase the flow by 6%. However, construction of all potential hydropower reservoirs in the basin may change the monthly mean flow distribution dramatically, although under the assumed operational rules, the impact of the dams is only substantial during wet years. The simulated impacts of climate change are considerable larger that those of the development scenarios (with exception of the high development scenario of hydropower schemes) although the results are sensitive to the choice of GCM and the IPCC SRES greenhouse gas (GHG) emission scenarios. The annual mean water flow predictions for the period 2020-2050 averaged over scenarios from all the four GCMs used in this study are close to the present situation for both the A2 and B2 GHG scenarios. For the 2050-2080 and 2070-2099 periods the all-GCM mean shows a flow decrease of 20% (14%) and 26% (17%), respectively, for the A2 (B2) GHG scenarios. However, the uncertainty in the magnitude of simulated future changes remains high. The simulated effect of climate change on minimum monthly flow is proportionally higher than the impact on the annual mean flow. (c) 2006 Elsevier B.V. All rights reserved.

  • 13.
    Arheimer, Berit
    et al.
    SMHI, Research Department, Hydrology.
    Andersson, Lotta
    SMHI, Core Services.
    Alkan-Olsson, J.
    Jonsson, A.
    Using catchment models to establish measure plans according to the Water Framework Directive2007In: Water Science and Technology, ISSN 0273-1223, E-ISSN 1996-9732, Vol. 56, no 1, p. 21-28Article in journal (Refereed)
    Abstract [en]

    A participatory modelling process (DEMO) has been developed and applied in a 350 km(2) catchment in southern Sweden. The overall goal is to improve the dialogues between experts and local stakeholders by using numerical models as a platform for discussions. The study is focused on reducing nutrient load and on the development of a locally established measure plan, which is requested by the European Water Framework Directive. The HBV-NP model was chosen as it can calculate effects and costs for different allocations of several combined measures in a catchment. This paper shows the impact of including local data in the modelling process vs. using more general data. It was found that modelled diffuse nutrient pollution was highly modified when including local know-how, soft information and more detailed field investigations. Leaching from arable land was found to be 35% higher using more detailed information on for instance, agricultural practices, crop and soil distribution. Moreover, the stakeholders' acceptance of model results and reliance on experts was increased by applying the participatory process and involving stakeholders in the modelling procedure.

  • 14.
    Arheimer, Berit
    et al.
    SMHI, Research Department, Hydrology.
    Andersson, Lotta
    SMHI, Core Services.
    Larsson, M
    Lindström, Göran
    SMHI, Research Department, Hydrology.
    Olsson, Jonas
    SMHI, Research Department, Hydrology.
    Pers, Charlotta
    SMHI, Research Department, Hydrology.
    Modelling diffuse nutrient flow in eutrophication control scenarios2004In: Water Science and Technology, ISSN 0273-1223, E-ISSN 1996-9732, Vol. 49, no 3, p. 37-45Article in journal (Refereed)
    Abstract [en]

    The Swedish Water Management Research Programme (VASTRA) focuses on the development and demonstration of tools for more efficient eutrophication control when implementing the EU water framework directive in Sweden. During the first half of the programme, models for nitrogen flow were developed, and at present, similar models for phosphorus are under construction (e.g. HBV-P). The programme is interdisciplinary, and scientists are collaborating in actor-games and focus group evaluations including scenario analysis. The scenarios modelled in VASTRA phase 1, show that (i) changed agricultural practices can be the most effective and-least expensive way to reduce nitrogen transport from land to, the sea; (ii) constructed agricultural wetlands may only have small impact on riverine nitrogen transport in some regions, due to natural hydrometeorological dynamics; (iii) removing planktivorous fish may be an efficient way of reducing the algal concentrations in lakes without the undesired side-effect of increased nutrient load to the down-stream river system. In VASTRA phase 11, one of the highlights will be interdisciplinary scenario-modelling of different measure strategies in a pilot catchment of southern Sweden (Ronne a).

  • 15. Bishop, Kevin
    et al.
    Beven, Keith
    Destouni, Georgia
    Abrahamsson, Katarina
    Andersson, Lotta
    SMHI, Core Services.
    Johnson, Richard K.
    Rodhe, Johan
    Hjerdt, Niclas
    SMHI, Core Services.
    Nature as the "Natural" Goal for Water Management: A Conversation2009In: Ambio, ISSN 0044-7447, E-ISSN 1654-7209, Vol. 38, no 4, p. 209-214Article in journal (Other academic)
    Abstract [en]

    The goals for water-quality and ecosystem integrity are often defined relative to "natural" reference conditions in many water-management systems, including the European Union Water Framework Directive. This paper examines the difficulties created for water management by using "natural" as the goal. These difficulties are articulated from different perspectives in an informal (fictional) conversation that takes place after a workshop on reference conditions in water-resources management. The difficulties include defining the natural state and modeling how a system might be progressed toward the natural, as well as the feasibility and desirability of restoring a natural state. The paper also considers the appropriateness for developing countries to adopt the use of natural as the goal for water management. We conclude that failure to critically examine the complexities of having "natural" as the goal will compromise the ability to manage the issues that arise in real basins by not making the ambiguities associated with this "natural" goal explicit. This is unfortunate both for the western world that has embraced this model of "natural as the goal" and for the developing world in so far as they are encouraged to adopt this model.

  • 16. Dahlke, Helen E.
    et al.
    Behrens, Thorsten
    Seibert, Jan
    Andersson, Lotta
    SMHI, Core Services.
    Test of statistical means for the extrapolation of soil depth point information using overlays of spatial environmental data and bootstrapping techniques2009In: Hydrological Processes, ISSN 0885-6087, E-ISSN 1099-1085, Vol. 23, no 21, p. 3017-3029Article in journal (Refereed)
    Abstract [en]

    Hydrological modelling depends highly on the accuracy and uncertainty of model input parameters such as soil properties. Since most of these data are field Surveyed, geostatistical techniques Such as kriging, classification and regression trees or more sophisticated soil-landscape models need to be applied to interpolate point information to the area. Most of the existing interpolation techniques require a random or regular distribution of points Within the study area but are not adequate to satisfactorily interpolate soil catena or transect data. The soil landscape model presented in this study is predicting soil information from transect or catena point data using a statistical mean (arithmetic, geometric and harmonic mean) to calculate the soil information based on class means of merged spatial explanatory variables. A data set of 226 soil depth measurements covering a range of 0-6.5 m was used to test the model. The point data were sampled along four transects in the Stubbetorp catchment, SE-Sweden. We overlaid a geomorphology map (8 classes) with digital elevation model-derived topographic index maps (2-9 classes) to estimate the range of error the model produces with changing sample size and input maps. The accuracy of the soil depth predictions was estimated with the root mean square error (RMSE) based oil a testing and training data set. RMSE ranged generally between 0.73 and 0.83 m +/- 0.013 m depending on the amount of classes the merged layers had, but were smallest for a map combination with a low number of classes predicted with the harmonic mean (RMSE = 0.46 m). The results show that the prediction accuracy of this method depends oil the number of point values in the sample, the value range of the measured attribute and the initial correlations between point values and explanatory variables, but suggests that the model approach is in general scale invariant. Copyright (C) 2009 John Wiley & Sons, Ltd.

  • 17.
    Graham, Phil
    et al.
    SMHI, Research Department, Climate research - Rossby Centre.
    Andersson, Lotta
    SMHI, Core Services.
    Horan, Mark
    Kunz, Richard
    Lumsden, Trevor
    Schulze, Roland
    Warburton, Michele
    Wilk, Julie
    Yang, Wei
    SMHI, Research Department, Hydrology.
    Using multiple climate projections for assessing hydrological response to climate change in the Thukela River Basin, South Africa2011In: Physics and Chemistry of the Earth, ISSN 1474-7065, E-ISSN 1873-5193, Vol. 36, no 14-15, p. 727-735Article in journal (Refereed)
    Abstract [en]

    This study used climate change projections from different regional approaches to assess hydrological effects on the Thukela River Basin in KwaZulu-Natal, South Africa. Projecting impacts of future climate change onto hydrological systems can be undertaken in different ways and a variety of effects can be expected. Although simulation results from global climate models (GCMs) are typically used to project future climate, different outcomes from these projections may be obtained depending on the GCMs themselves and how they are applied, including different ways of downscaling from global to regional scales. Projections of climate change from different downscaling methods, different global climate models and different future emissions scenarios were used as input to simulations in a hydrological model to assess climate change impacts on hydrology. A total of 10 hydrological change simulations were made, resulting in a matrix of hydrological response results. This matrix included results from dynamically downscaled climate change projections from the same regional climate model (RCM) using an ensemble of three GCMs and three global emissions scenarios, and from statistically downscaled projections using results from five GCMs with the same emissions scenario. Although the matrix of results does not provide complete and consistent coverage of potential uncertainties from the different methods, some robust results were identified. In some regards, the results were in agreement and consistent for the different simulations. For others, particularly rainfall, the simulations showed divergence. For example, all of the statistically downscaled simulations showed an annual increase in precipitation and corresponding increase in river runoff, while the RCM downscaled simulations showed both increases and decreases in runoff. According to the two projections that best represent runoff for the observed climate, increased runoff would generally be expected for this basin in the future. Dealing with such variability in results is not atypical for assessing climate change impacts in Africa and practitioners are faced with how to interpret them. This work highlights the need for additional, well-coordinated regional climate downscaling for the region to further define the range of uncertainties involved. (C) 2011 Elsevier Ltd. All rights reserved.

  • 18. Hughes, Denis A.
    et al.
    Andersson, Lotta
    SMHI, Core Services.
    Wilk, Julie
    Savenije, Hubert H. G.
    Regional calibration of the Pitman model for the Okavango River2006In: Journal of Hydrology, ISSN 0022-1694, E-ISSN 1879-2707, Vol. 331, no 1-2, p. 30-42Article in journal (Refereed)
    Abstract [en]

    This paper reports on the application of a monthly rainfall-runoff model for the Okavango River Basin. Streamflow is mainly generated in Angola where the Cuito and Cubango rivers arise. They then join and cross the Namibia/Angola border, flowing into the Okavango wetland in Botswana. The model is a modified version of the Pitman model, including more explicit ground and surface water interactions. Significant limitations in access to climatological data, and lack of sufficiently long records of observed flow for the eastern sub-basins represent great challenges to model calibration. The majority of the runoff is generated in the wetter headwater tributaries, while the lower sub-basins are dominated by channel loss processes with very little incremental flow contributions, even during wet years. The western tributaries show significantly higher seasonal variation in flow, compared to the baseflow dominated eastern tributaries: observations that are consistent with their geological differences. The basin was sub-divided into 24 sub-basins, of which 18 have gauging stations at their outlet. Satisfactory simulations were achieved with sub-basin parameter value differences that correspond to the spatial variability in basin physiographic characteristics. The limited length of historical rainfall and river discharge data over Angola precluded the use of a split sample calibration/validation test. However, satellite generated rainfall data, revised to reflect the same frequency characteristics as the historical rainfall data, were used to validate the model against the available downstream flow data during the 1990s. The overall conclusion is that the model, in spite of the limited data access, adequately represents the hydrological response of the basin and that it can be used to assess the impact of future development scenarios. (c) 2006 Elsevier B.V. All rights reserved.

  • 19. Jonsson, A.
    et al.
    Andersson, Lotta
    SMHI, Core Services.
    Alkan-Olsson, J.
    Arheimer, Berit
    SMHI, Research Department, Hydrology.
    How participatory can participatory modeling be?: Degrees of influence of stakeholder and expert perspectives in six dimensions of participatory modeling2007In: Water Science and Technology, ISSN 0273-1223, E-ISSN 1996-9732, Vol. 56, no 1, p. 207-214Article in journal (Refereed)
    Abstract [en]

    The authors are involved in a project aiming at the development of a methodology for participatory modeling as a tool for public participation in water resource management. In this paper, some examples of different degrees of stakeholder influence in six key dimensions of participatory modeling are identified and discussed. Arnstein's (A ladder of citizen participation. Journal of the American Institute of Planners, 1969, 4, 216-224) critical discussion of different degrees of "real" decision-making power is taken as a point of departure to assess possible degrees of stakeholder influence. Can we as participatory modelers be sure that we are really inviting our research objects to an equal communicative relationship where local perspectives, knowledge and priorities are respected to the same extent as central and/or expert perspectives? This paper presents an approach that could be used as a tool for structured reflection to avoid unreflective tendencies towards expert knowledge dominance and low degree of stakeholders' real influence over the process.

  • 20. Olsson, Johanna Alkan
    et al.
    Andersson, Lotta
    SMHI, Core Services.
    Possibilities and problems with the use of models as a communication tool in water resource management2007In: Water resources management, ISSN 0920-4741, E-ISSN 1573-1650, Vol. 21, no 1, p. 97-110Article in journal (Refereed)
    Abstract [en]

    Politicians and policy-makers, as well as modellers, often nurses an expectation that model derived results is an objective source of information that can be used to support decisions. However, several prerequisites have to be dealt with in order to ensure that models can be used as legitimate and efficient tools in water resource management. Based on empirical material from recent studies on the use of models in stakeholder dialogues, mainly focusing on catchment nutrient transport, two central problems are identified: (a) Models are laden with choices and thus depend on assumptions and priorities of modellers. (b) There are several factors that influence ability and willingness of stakeholders (as information recovers) to criticize or accept results of the modelling exercise. Recognized factors likely to influence stakeholders' acceptance of model derived results include issues at stake, stakeholders' ability to criticize model derived information, and their trust in the institutions that have developed or applied the used models. Identified prerequisites for successful use of models in integrated water resource management include: consideration of user relevance, awareness of and preparedness to handle constraints linked to communication of model-based results, transparency of used models and data and of involved uncertainties, mutual respect between experts and stakeholders and between involved stakeholder groups, a robust institutional network, and sufficient time for dialogues. Development and use of strategies for participatory modelling, based on a continuous dialogue between experts and stakeholders is recommended as a way to facilitate that the prerequisites for a successful use of models in water resource management are fulfilled.

  • 21. Olsson, Johanna Alkan
    et al.
    Jonsson, Anna C.
    Andersson, Lotta
    SMHI, Core Services.
    Arheimer, Berit
    SMHI, Research Department, Hydrology.
    A model-supported participatory process for nutrient management: a socio-legal analysis of a bottom-up implementation of the EU Water Framework Directive2011In: International Journal of Agricultural Sustainability, ISSN 1473-5903, E-ISSN 1747-762X, Vol. 9, no 2, p. 379-389Article in journal (Refereed)
    Abstract [en]

    A methodology for local stakeholders' involvement in water management using a catchment model as a platform for dialogue has been developed and tested in the Kaggebo Bay drainage area in the southeast of Sweden. The process involved farmers, rural households not connected to municipal wastewater treatment facilities, local and regional authorities as well as different water and agricultural experts. This paper aims to assess whether and how the methodology has succeeded in encouraging social learning and promoting action and which barriers can be identified. The assessment shows that the methodology is able to create confidence in the process and increase the willingness to act as the methodology was able to adapt the form and content of the dialogue to better fit the cognitive and relational needs of involved stakeholders. It is also shown that the process may lead to a probable improvement of the eutrophication situation. However, if these types of processes are to serve not only as a basis for social learning and action at the local level, but also as the basis for a broader process of societal learning, then a mechanism to confer local ideas to the regional and national levels has to be clarified.

  • 22. Taubald, H.
    et al.
    Tonderski, K.
    Andersson, Lotta
    SMHI, Core Services.
    Ronnberg, R.
    Ahlgren, J.
    Oxygen isotopes in phosphate as a tracer for sources and pathways of catchment P in stream water2010In: Geochimica et Cosmochimica Acta, ISSN 0016-7037, E-ISSN 1872-9533, Vol. 74, no 12, p. A1030-A1030Article in journal (Other academic)
  • 23. Tonderski, Karin
    et al.
    Andersson, Lotta
    SMHI, Research Department, Hydrology.
    Lindström, Göran
    SMHI, Research Department, Hydrology.
    St Cyr, Rasmus
    Schoenberg, Ronny
    Taubald, Heinrich
    Assessing the use of delta O-18 in phosphate as a tracer for catchment phosphorus sources2017In: Science of the Total Environment, ISSN 0048-9697, E-ISSN 1879-1026, Vol. 607, p. 1-10Article in journal (Refereed)
  • 24. Wilk, J.
    et al.
    Andersson, Lotta
    SMHI, Core Services. SMHI, Research Department, Hydrology.
    Graham, Phil
    SMHI, Professional Services.
    Wikner, J. J.
    Mokwatlo, S.
    Petja, B.
    From forecasts to action - What is needed to make seasonal forecasts useful for South African smallholder farmers?2017In: International Journal of Disaster Risk Reduction, E-ISSN 2212-4209, Vol. 25, p. 202-211Article in journal (Refereed)
  • 25.
    Wilk, Julie
    et al.
    SMHI, Research Department, Hydrology.
    Andersson, Lotta
    SMHI, Core Services.
    Warburton, Michele
    Adaptation to climate change and other stressors among commercial and small-scale South African farmers2013In: Regional Environmental Change, ISSN 1436-3798, E-ISSN 1436-378X, Vol. 13, no 2, p. 273-286Article in journal (Refereed)
    Abstract [en]

    Commercial and small-scale farmers in South Africa are exposed to many challenges. Interviews with 44 farmers in the upper Thukela basin, KwaZulu-Natal, were conducted to identify common and specific challenges for the two groups and adaptive strategies for dealing with the effects of climate and other stressors. This work was conducted as part of a larger participatory project with local stakeholders to develop a local adaptation plan for coping with climate variability and change. Although many challenges related to exposure to climate variability and change, weak agricultural policies, limited governmental support, and theft were common to both farming communities, their adaptive capacities were vastly different. Small-scale farmers were more vulnerable due to difficulties to finance the high input costs of improved seed varieties and implements, limited access to knowledge and agricultural techniques for water and soil conservation and limited customs of long-term planning. In addition to temperature and drought-related challenges, small-scale farmers were concerned about soil erosion, water logging and livestock diseases, challenges for which the commercial farmers already had efficient adaptation strategies in place. The major obstacle hindering commercial farmers with future planning was the lack of clear directives from the government, for example, with regard to issuing of water licences and land reform. Enabling agricultural communities to procure sustainable livelihoods requires implementation of strategies that address the common and specific challenges and strengthen the adaptive capacity of both commercial and small-scale farmers. Identified ways forward include knowledge transfer within and across farming communities, clear governmental directives and targeted locally adapted finance programmes.

  • 26. Wilk, Julie
    et al.
    Kniveton, Dominic
    Andersson, Lotta
    SMHI, Core Services.
    Layberry, Russell
    Todd, Martin C.
    Hughes, Denis
    Ringrose, Susan
    Vanderpost, Cornelis
    Estimating rainfall and water balance over the Okavango River Basin for hydrological applications2006In: Journal of Hydrology, ISSN 0022-1694, E-ISSN 1879-2707, Vol. 331, no 1-2, p. 18-29Article in journal (Refereed)
    Abstract [en]

    A historical database for use in rainfall-runoff modeling of the Okavango River Basin in Southwest Africa is presented. The work has relevance for similar data-sparse regions. The parameters of main concern are rainfall and catchment water balance, which are key variables for subsequent studies of the hydrological impacts of development and climate change. Rainfall estimates are based on a combination of in situ gauges and satellite sources. Rain gauge measurements are most extensive from 1955 to 1972, after which they are drastically reduced due to the Angolan civil war. The sensitivity of the rainfall fields to spatial interpolation techniques and the density of gauges were evaluated. Satellite based rainfall estimates for the basin are developed for the period from 1991 onwards, based on the Tropical Rainfall Measuring Mission (TRMM) and Special Sensor Microwave Imager (SSM/I) datasets. The consistency between the gauges and satellite estimates was considered. A methodology was developed to allow calibration of the rainfall-runoff hydrological model against rain gauge data from 1960 to 1972, with the prerequisite that the model should be driven by satellite derived rainfall products from ` 1990 onwards. With the rain gauge data, addition of a single rainfall station (Longa) in regions where stations earlier were lacking was more important than the chosen interpolation method. Comparison of satellite and gauge rainfall outside the basin indicated that the satellite overestimates rainfall by 20%. A non-linear correction was derived by fitting the rainfall frequency characteristics to those of the historical rainfall data. This satellite rainfall dataset was found satisfactory when using the Pitman rainfall-runoff model (Hughes, D., Andersson, L., Wilk, J., Savenije, H.H.G., this issue. Regional calibration of the Pitman model for the Okavango River. Journal of Hydrology). Intensive monitoring in the region is recommended to increase accuracy of the comprehensive satellite rainfall estimate calibration procedure. (c) 2006 Elsevier B.V. All rights reserved.

1 - 26 of 26
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.8
|