Change search
Refine search result
1 - 15 of 15
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Amorim, Jorge Humberto
    et al.
    SMHI, Research Department, Air quality.
    Asker, Christian
    SMHI, Research Department, Air quality.
    Belusic, Danijel
    SMHI, Research Department, Climate research - Rossby Centre.
    Carvalho, Ana
    SMHI, Research Department, Air quality.
    Engardt, Magnuz
    SMHI, Research Department, Air quality.
    Gidhagen, Lars
    SMHI, Research Department, Air quality.
    Hundecha, Yeshewatesfa
    SMHI, Research Department, Hydrology.
    Körnich, Heiner
    SMHI, Research Department, Meteorology.
    Lind, Petter
    SMHI, Research Department, Climate research - Rossby Centre.
    Olsson, Esbjörn
    SMHI, Research Department, Meteorology.
    Olsson, Jonas
    SMHI, Research Department, Hydrology.
    Segersson, David
    SMHI, Research Department, Air quality.
    Strombäck, Lena
    SMHI, Research Department, Hydrology.
    Joe, Paul
    Baklanov, Alexander
    Integrated Urban Services for European cities: the Stockholm case2018In: WMO Bulletin, ISSN 0042-9767, Vol. 67, no 2, p. 33-40Article in journal (Refereed)
  • 2. Ceola, S.
    et al.
    Arheimer, Berit
    SMHI, Research Department, Hydrology.
    Baratti, E.
    Bloeschl, G.
    Capell, Réne
    SMHI, Research Department, Hydrology.
    Castellarin, A.
    Freer, J.
    Han, D.
    Hrachowitz, M.
    Hundecha, Yeshewatesfa
    SMHI, Research Department, Hydrology.
    Hutton, C.
    Lindström, Göran
    SMHI, Research Department, Hydrology.
    Montanari, A.
    Nijzink, R.
    Parajka, J.
    Toth, E.
    Viglione, A.
    Wagener, T.
    Virtual laboratories: new opportunities for collaborative water science2015In: Hydrology and Earth System Sciences, ISSN 1027-5606, E-ISSN 1607-7938, Vol. 19, no 4, p. 2101-2117Article in journal (Refereed)
    Abstract [en]

    Reproducibility and repeatability of experiments are the fundamental prerequisites that allow researchers to validate results and share hydrological knowledge, experience and expertise in the light of global water management problems. Virtual laboratories offer new opportunities to enable these prerequisites since they allow experimenters to share data, tools and pre-defined experimental procedures (i.e. protocols). Here we present the outcomes of a first collaborative numerical experiment undertaken by five different international research groups in a virtual laboratory to address the key issues of reproducibility and repeatability. Moving from the definition of accurate and detailed experimental protocols, a rainfall-runoff model was independently applied to 15 European catchments by the research groups and model results were collectively examined through a web-based discussion. We found that a detailed modelling protocol was crucial to ensure the comparability and reproducibility of the proposed experiment across groups. Our results suggest that sharing comprehensive and precise protocols and running the experiments within a controlled environment (e.g. virtual laboratory) is as fundamental as sharing data and tools for ensuring experiment repeatability and reproducibility across the broad scientific community and thus advancing hydrology in a more coherent way.

  • 3. Eisner, S.
    et al.
    Floerke, M.
    Chamorro, A.
    Daggupati, P.
    Donnelly, Chantal
    SMHI, Research Department, Hydrology.
    Huang, J.
    Hundecha, Yeshewatesfa
    SMHI, Research Department, Hydrology.
    Koch, H.
    Kalugin, A.
    Krylenko, I.
    Mishra, V.
    Piniewski, M.
    Samaniego, L.
    Seidou, O.
    Wallner, M.
    Krysanova, V.
    An ensemble analysis of climate change impacts on streamflow seasonality across 11 large river basins2017In: Climatic Change, ISSN 0165-0009, E-ISSN 1573-1480, Vol. 141, no 3, p. 401-417Article in journal (Refereed)
  • 4. Falter, Daniela
    et al.
    Schroeter, Kai
    Dung, Nguyen Viet
    Vorogushyn, Sergiy
    Kreibich, Heidi
    Hundecha, Yeshewatesfa
    SMHI, Research Department, Hydrology.
    Apel, Heiko
    Merz, Bruno
    Spatially coherent flood risk assessment based on long-term continuous simulation with a coupled model chain2015In: Journal of Hydrology, ISSN 0022-1694, E-ISSN 1879-2707, Vol. 524, p. 182-193Article in journal (Refereed)
    Abstract [en]

    A novel approach for assessing flood risk in river catchments in a spatially consistent way is presented. The approach is based on a set of coupled models representing the complete flood risk chain, including a multisite, multivariate weather generator, a hydrological model, a coupled 1D-2D hydrodynamic model and a flood loss model. The approach is exemplarily developed for the meso-scale Mulde catchment in Germany. 10,000 years of meteorological fields at daily resolution are generated and used as input to the subsequent models, yielding 10,000 years of spatially consistent river discharge series, inundation patterns and damage values. This allows estimating flood risk directly from the simulated damage. The benefits of the presented approach are: (1) in contrast to traditional flood risk assessments, where homogenous return periods are assumed for the entire catchment, the approach delivers spatially heterogeneous patterns of precipitation, discharge, inundation and damage patterns which respect the spatial correlations of the different processes and their spatial interactions. (2) Catchment and floodplain processes are represented in a holistic way, since the complete chain of flood processes is represented by the coupled models. For instance, the effects of spatially varying antecedent catchment conditions on flood hydrographs are implicitly taken into account. (3) Flood risk is directly derived from damage yielding a more realistic representation of flood risk. Traditionally, the probability of discharge is used as proxy for the probability of damage. However, non-linearities and threshold behaviour along the flood risk chain contribute to substantial variability between damage probabilities and corresponding discharge probabilities. (C) 2015 Elsevier B.V. All rights reserved.

  • 5. Huang, Shaochun
    et al.
    Kumar, Rohini
    Floerke, Martina
    Yang, Tao
    Hundecha, Yeshewatesfa
    SMHI, Research Department, Hydrology.
    Kraft, Philipp
    Gao, Chao
    Gelfan, Alexander
    Liersch, Stefan
    Lobanova, Anastasia
    Strauch, Michael
    van Ogtrop, Floris
    Reinhardt, Julia
    Haberlandt, Uwe
    Krysanova, Valentina
    Evaluation of an ensemble of regional hydrological models in 12 large-scale river basins worldwide2017In: Climatic Change, ISSN 0165-0009, E-ISSN 1573-1480, Vol. 141, no 3, p. 381-397Article in journal (Refereed)
  • 6. Huang, Shaochun
    et al.
    Kumar, Rohini
    Floerke, Martina
    Yang, Tao
    Hundecha, Yeshewatesfa
    SMHI, Research Department, Hydrology.
    Kraft, Philipp
    Gao, Chao
    Gelfan, Alexander
    Liersch, Stefan
    Lobanova, Anastasia
    Strauch, Michael
    van Ogtrop, Floris
    Reinhardt, Julia
    Haberlandt, Uwe
    Krysanova, Valentina
    Evaluation of an ensemble of regional hydrological models in 12 large-scale river basins worldwide (vol 141, pg 381, 2017)2017In: Climatic Change, ISSN 0165-0009, E-ISSN 1573-1480, Vol. 141, no 3, p. 399-400Article in journal (Refereed)
  • 7.
    Hundecha, Yeshewatesfa
    et al.
    SMHI, Research Department, Hydrology.
    Arheimer, Berit
    SMHI, Research Department, Hydrology.
    Donnelly, Chantal
    SMHI, Research Department, Hydrology.
    Pechlivanidis, Ilias
    SMHI, Research Department, Hydrology.
    A regional parameter estimation scheme for a pan-European multi-basin model.2016In: Journal of Hydrology, ISSN 0022-1694, E-ISSN 1879-2707, Vol. 6, p. 90-111Article in journal (Refereed)
  • 8.
    Hundecha, Yeshewatesfa
    et al.
    SMHI, Research Department, Hydrology.
    Sunyer, Maria A.
    Lawrence, Deborah
    Madsen, Henrik
    Willems, Patrick
    Buerger, Gerd
    Kriauciuniene, Jurate
    Loukas, Athanasios
    Martinkova, Marta
    Osuch, Marzena
    Vasiliades, Lampros
    von Christierson, Birgitte
    Vormoor, Klaus
    Yuecel, Ismail
    Inter-comparison of statistical downscaling methods for projection of extreme flow indices across Europe2016In: Journal of Hydrology, ISSN 0022-1694, E-ISSN 1879-2707, Vol. 541, p. 1273-1286Article in journal (Refereed)
  • 9.
    Kuentz, Anna
    et al.
    SMHI, Core Services.
    Arheimer, Berit
    SMHI, Research Department, Hydrology.
    Hundecha, Yeshewatesfa
    SMHI, Research Department, Hydrology.
    Wagener, Thorsten
    Understanding hydrologic variability across Europe through catchment classification2017In: Hydrology and Earth System Sciences, ISSN 1027-5606, E-ISSN 1607-7938, Vol. 21, no 6, p. 2863-2879Article in journal (Refereed)
  • 10. Mangini, Walter
    et al.
    Viglione, Alberto
    Hall, Julia
    Hundecha, Yeshewatesfa
    SMHI, Research Department, Hydrology.
    Ceola, Serena
    Montanari, Alberto
    Rogger, Magdalena
    Salinas, Jose Luis
    Borzi, Iolanda
    Parajka, Juraj
    Detection of trends in magnitude and frequency of flood peaks across Europe2018In: Hydrological Sciences Journal, ISSN 0262-6667, E-ISSN 2150-3435, Vol. 63, no 4, p. 493-512Article in journal (Refereed)
  • 11. Merz, Bruno
    et al.
    Apel, Heiko
    Nguyen, Dung
    Falter, Daniela
    Guse, Björn
    Hundecha, Yeshewatesfa
    SMHI, Research Department, Hydrology.
    Kreibich, Heidi
    Schröter, Kai
    Vorogushyn, Sergiy
    From Precipitation to Damage: A Coupled Model Chain for Spatially Coherent, Large‐Scale Flood Risk AssessmentChapter 102018In: Global Flood Hazard: Applications in Modeling, Mapping, and Forecasting: Geophysical Monograph 233. AGU Publication / [ed] Guy J-P. Schumann, Paul D. Bates, Heiko Apel, and Giuseppe T. Aronica., John Wiley & Sons, 2018, First Edition, p. 169-183Chapter in book (Other academic)
  • 12. Ouarda, T. B. M. J.
    et al.
    Charron, C.
    Hundecha, Yeshewatesfa
    SMHI, Research Department, Hydrology.
    St-Hilaire, A.
    Chebana, F.
    Introduction of the GAM model for regional low-flow frequency analysis at ungauged basins and comparison with commonly used approaches2018In: Environmental Modelling & Software, ISSN 1364-8152, E-ISSN 1873-6726, Vol. 109, p. 256-271Article in journal (Refereed)
  • 13. Parajka, Juraj
    et al.
    Bezak, Nejc
    Burkhart, John
    Hauksson, Bjarki
    Holko, Ladislav
    Hundecha, Yeshewatesfa
    SMHI, Research Department, Hydrology.
    Jenicek, Michal
    Krajci, Pavel
    Mangini, Walter
    Molnar, Peter
    Riboust, Philippe
    Rizzi, Jonathan
    Sensoy, Aynur
    Thirel, Guillaume
    Viglione, Alberto
    MODIS snowline elevation changes during snowmelt runoff events in Europe2019In: Journal of Hydrology and Hydromechanics, ISSN 0042-790X, E-ISSN 1338-4333, Vol. 67, no 1, p. 101-109Article in journal (Refereed)
  • 14.
    Pechlivanidis, Ilias
    et al.
    SMHI, Research Department, Hydrology.
    Arheimer, Berit
    SMHI, Research Department, Hydrology.
    Donnelly, Chantal
    SMHI, Research Department, Hydrology.
    Hundecha, Yeshewatesfa
    SMHI, Research Department, Hydrology.
    Huang, S.
    Aich, V.
    Samaniego, L.
    Eisner, S.
    Shi, P.
    Analysis of hydrological extremes at different hydro-climatic regimes under present and future conditions2017In: Climatic Change, ISSN 0165-0009, E-ISSN 1573-1480, Vol. 141, no 3, p. 467-481Article in journal (Refereed)
  • 15.
    Pechlivanidis, Ilias
    et al.
    SMHI, Research Department, Hydrology.
    Arheimer, Berit
    SMHI, Research Department, Hydrology.
    Donnelly, Chantal
    SMHI, Research Department, Hydrology.
    Hundecha, Yeshewatesfa
    SMHI, Research Department, Hydrology.
    Huang, S.
    Aich, V.
    Samaniego, L.
    Eisner, S.
    Shi, P.
    Analysis of hydrological extremes at different hydro-climatic regimes under present and future conditions.2016In: Climatic Change, ISSN 0165-0009, E-ISSN 1573-1480Article in journal (Refereed)
1 - 15 of 15
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.7
|