Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Eissler, Y
    et al.
    Sahlsten, Elisabeth
    SMHI, Research Department, Oceanography.
    Quinones, R A
    Effects of virus infection on respiration rates of marine phytoplankton and microplankton communities2003In: Marine Ecology Progress Series, ISSN 0171-8630, E-ISSN 1616-1599, Vol. 262, p. 71-80Article in journal (Refereed)
    Abstract [en]

    The possible influence of viral infection on respiration rates in marine microbial pelagic communities was assessed by means of 3 experiments on respiration rate with viral concentrate addition on single-species cultures of Mantoniella sp. and Micromonas pusilla and another 3 on natural microplankton communities (organisms < 200 mum) from the Kattegat Sea ((A) over circle stol) and the Baltic Sea. Coastal surface seawater samples were taken during cruises of the RVs 'Ancylus' and 'Argos' during winter and spring 2000. Approximately 50 to 70 l of seawater were concentrated by ultrafiltration. The experiments were started by adding a viral particle concentrate to a container with algae or a natural microplankton community; a control container was kept free of the viral concentrate addition. Oxygen concentration determinations were carried out on each treatment and control to measure respiration rates throughout the incubation period. The in vivo chlorophyll a fluorescence was also monitored as an indication of algal infection. The rates of respiration indicated that the addition of the viral particle concentrate affected the respective metabolisms of the Mantoniella sp. and Micromonas pusilla cultures as well as natural microplankton communities. Viral infection decreased the Mantoniella sp. respiration rate (by 96%) and increased the Micromonas pusilla respiration rate (by 235%). Hence, if our results can be extrapolated to nature, then, at least in a bloom situation, the fate of primary production and carbon fluxes could be strongly modulated by viral infection. The addition of a viral particle concentrate to the microplankton community generated complex responses in terms of respiration rates, which increased (by 84%) or remained similar to the controls. Our results suggest that viral infection of microplanktonic organisms could be one of the factors significantly modifying pelagic carbon fluxes.

  • 2. Skogen, Morten D.
    et al.
    Ji, Rubao
    Akimova, Anna
    Daewel, Ute
    Hansen, Cecilie
    Hjollo, Solfrid S.
    van Leeuwen, Sonja M.
    Maar, Marie
    Macias, Diego
    Mousing, Erik Askov
    Almroth-Rosell, Elin
    SMHI, Research Department, Oceanography.
    Sailley, Sevrine F.
    Spence, Michael A.
    Troost, Tineke A.
    van de Wolfshaar, Karen
    Disclosing the truth: Are models better than observations?2021In: Marine Ecology Progress Series, ISSN 0171-8630, E-ISSN 1616-1599, Vol. 680, p. 7-13Article in journal (Refereed)
    Abstract [en]

    The aphorism, 'All models are wrong, but some models are useful', originally referred to statistical models, but is now used for scientific models in general. When presenting results from a marine simulation model, this statement effectively stops discussions about the quality of the model, as there is always another observation to mismatch, and thereby another confirmation why the model cannot be trusted. It is common that observations are less challenged and are often viewed as a 'gold standard' for judging models, whereas proper interpretations and the true value of models are often overlooked. Models are not perfect, and there are many examples where models are used improperly to provide misleading answers with great confidence, but to what extent does an observation represent the truth? The precision of the observational gear may be high, but what about representativeness? The interpretation of observations is simply another model, but this time not coded in a computer language but rather formed by the individual observer. We submit that it would be more productive to initiate a process where the norm is that models and observations are joined to strengthen both. In the end, neither method is the goal, but both are useful tools for disclosing the truth. Biased views on either observational or modeling approaches would limit us from achieving this goal.

  • 3.
    Torstensson, Anders
    et al.
    SMHI, Samhällsplanering.
    Showalter, G. M.
    Margolin, A. R.
    Shadwick, E. H.
    Deming, J. W.
    Smith, W. O., Jr.
    Chemical and biological vertical distributions within central Arctic (>82 degrees N) sea ice during late summer2023In: Marine Ecology Progress Series, ISSN 0171-8630, E-ISSN 1616-1599, Vol. 703, p. 17-30Article in journal (Refereed)
  • 4. Weigel, Benjamin
    et al.
    Andersson, Helén
    SMHI, Research Department, Oceanography.
    Meier, Markus
    SMHI, Research Department, Oceanography.
    Blenckner, Thorsten
    Snickars, Martin
    Bonsdorff, Erik
    Long-term progression and drivers of coastal zoobenthos in a changing system2015In: Marine Ecology Progress Series, ISSN 0171-8630, E-ISSN 1616-1599, Vol. 528, p. 141-159Article in journal (Refereed)
    Abstract [en]

    Coastal zones are facing climate-driven change coupled with escalating eutrophication. With increasing shifts in hydrographic conditions during the past few decades, a focal task is to understand how environmental drivers affect zoobenthic communities, which play a crucial role in ecosystem functioning. By using long-term data, spanning 40 yr (1973 to 2013) in the northern Baltic Sea, we showed a disparity in zoobenthic responses with pronounced changes in community composition and a trend towards decreased biomass in sheltered areas, while biomasses increased in exposed areas of the coastal zone. We used generalized additive modeling to show that bottom oxygen saturation, sea surface temperature and organic load of the sediments were the main environmental drivers behind contrasting patterns in biomass progression. Oxygen saturation alone explained over one third of the deviation in the biomass developments in sheltered areas, while exposed areas were mainly limited by organic content of the sediments. We analyzed high-resolution climate-scenario simulations, following the Intergovernmental Panel on Climate Change scenarios for the Baltic Sea region in combination with different nutrient load scenarios, for the end of the 21st century. The scenario outcomes showed negative trends in bottom oxygen concentrations throughout the coastal and archipelago zone along with overall increasing temperatures and primary production, and decreasing salinity. Our results suggest that these projected future conditions will strengthen the observed pattern in decreasing zoobenthic production in the immediate coastal zones. Moreover, the potential intensification of unfavorable conditions ex-panding seaward may lead to an expansion of biomass loss to more exposed sites.

1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf