Change search
Refine search result
1 - 21 of 21
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Amaguchi, H.
    et al.
    Kawamura, A.
    Olsson, Jonas
    SMHI, Research Department, Hydrology.
    Takasaki, T.
    Development and testing of a distributed urban storm runoff event model with a vector-based catchment delineation2012In: Journal of Hydrology, ISSN 0022-1694, E-ISSN 1879-2707, Vol. 420, p. 205-215Article in journal (Refereed)
    Abstract [en]

    The recent advances in GIS technology as well as data availability open up new possibilities concerning urban storm runoff modeling. In this paper, a vector-based distributed storm event runoff model - the Tokyo Storm Runoff (TSR) model - is developed and tested for urban runoff analysis using two historical storm events. The set-up of this model is based on urban landscape GIS delineation that faithfully describes the complicated urban land use features in detail. The flow between single spatial elements is based on established hydraulic and hydrological models with equations that describe all aspects of storm runoff generation in an urban environment. The model was set up and evaluated for the small urban lower Ekota catchment in Tokyo Metropolis, Japan. No calibration or tuning was performed, but the general model formulation was used with standard parameter values obtained from the literature. The runoff response to two storm events were simulated; one minor event resulting only in a small-scale flood wave and one major event which inundated parts of the catchment. For both events, the simulated water levels closely reproduced the observed ones. For the major event, also the reported inundation area was well described by the model. It was also demonstrated how the model can be used to evaluate the flow conditions in specific components of the urban hydrological system, which facilitates e.g. evaluation of flood-preventive measures. (C) 2011 Elsevier B.V. All rights reserved.

  • 2.
    Andersson, Lotta
    et al.
    SMHI, Core Services.
    Wilk, Julie
    Todd, Martin C.
    Hughes, Denis A.
    Earle, Anton
    Kniveton, Dominic
    Layberry, Russet
    Savenije, Hubert H. G.
    Impact of climate change and development scenarios on flow patterns in the Okavango River2006In: Journal of Hydrology, ISSN 0022-1694, E-ISSN 1879-2707, Vol. 331, no 1-2, p. 43-57Article in journal (Refereed)
    Abstract [en]

    This paper lays the foundation for the use of scenario modelling as a tool for integrated water resource management in the Okavango River basin. The Pitman hydrological model is used to assess the impact of various development and climate change scenarios on downstream river flow. The simulated impact on modelled river discharge of increased water use for domestic use, livestock, and informal irrigation (proportional to expected population increase) is very limited. Implementation of all likely potential formal irrigation schemes mentioned in available reports is expected to decrease the annual flow by 2% and the minimum monthly flow by 5%. The maximum possible impact of irrigation on annual average flow is estimated as 8%, with a reduction of minimum monthly flow by 17%. Deforestation of all areas within a 1 km buffer around the rivers is estimated to increase the flow by 6%. However, construction of all potential hydropower reservoirs in the basin may change the monthly mean flow distribution dramatically, although under the assumed operational rules, the impact of the dams is only substantial during wet years. The simulated impacts of climate change are considerable larger that those of the development scenarios (with exception of the high development scenario of hydropower schemes) although the results are sensitive to the choice of GCM and the IPCC SRES greenhouse gas (GHG) emission scenarios. The annual mean water flow predictions for the period 2020-2050 averaged over scenarios from all the four GCMs used in this study are close to the present situation for both the A2 and B2 GHG scenarios. For the 2050-2080 and 2070-2099 periods the all-GCM mean shows a flow decrease of 20% (14%) and 26% (17%), respectively, for the A2 (B2) GHG scenarios. However, the uncertainty in the magnitude of simulated future changes remains high. The simulated effect of climate change on minimum monthly flow is proportionally higher than the impact on the annual mean flow. (c) 2006 Elsevier B.V. All rights reserved.

  • 3.
    Arheimer, Berit
    et al.
    SMHI, Research Department, Hydrology.
    Lidén, R.
    SMHI.
    Nitrogen and phosphorus concentrations from agricultural catchments - influence of spatial and temporal variables2000In: Journal of Hydrology, ISSN 0022-1694, E-ISSN 1879-2707, Vol. 227, no 1-4, p. 140-159Article in journal (Refereed)
    Abstract [en]

    The eutrophication problem has drawn attention to nutrient leaching from arable land in southern Sweden, and further understanding of spatial and temporal variability is needed in order to develop decision-making tools. Thus, the influence of spatial and temporal variables was analysed statistically using empirical time series of different nutrient species from 35 well-documented catchments (2-35 km(2)), which have been monitored for an average of 5 years. In the spatial analysis several significant correlations between winter median concentrations and catchment characteristics were found. The strongest correlation was found between inorganic nitrogen and land use, while concentrations of different phosphorus species were highly correlated to soil texture. Multiple linear regression models gave satisfactory results for prediction of median winter concentrations in unmeasured catchments, especially for inorganic nitrogen and phosphate. In the analysis of temporal variability within catchments, internal variables from a dynamic hydrological model (HBV) were linked to concentration fluxes. It was found that phosphorus and inorganic nitrogen concentrations were elevated during flow increase at low-Bow conditions, while they were diluted as the wetness in the catchment increased. During unmonitored periods regression models were successful in predicting temporal variability of total phosphorus, phosphate and inorganic nitrogen, while organic nitrogen and particulate phosphorus could not be predicted with this approach. Dividing the data into different flow categories did not improve the prediction of nutrient concentration dynamics. The results and literature review presented, confirm parts of the present HBV-W model approach and will be useful for further development of nutrient routines linked to dynamic hydrological models. (C) 2000 Elsevier Science B.V. All rights reserved.

  • 4.
    Berg, Peter
    et al.
    SMHI, Research Department, Climate research - Rossby Centre.
    Feldmann, H.
    Panitz, H. -J
    Bias correction of high resolution regional climate model data2012In: Journal of Hydrology, ISSN 0022-1694, E-ISSN 1879-2707, Vol. 448, p. 80-92Article in journal (Refereed)
    Abstract [en]

    Bias correction of varying complexity - from simple scaling and additive corrections to more advanced histogram equalisation (HE) corrections - is applied to high resolution (7 km) regional climate model (RCM) simulations. The aim of the study is to compare different methods that are easily implemented and applied to the data, and to assess the applicability and impact of the bias correction depending on the type of bias. The model bias is determined by comparison to a new gridded high resolution (1 km) data set of temperature and precipitation, which is also used as reference for the corrections. The performance of the different methods depends on the type of bias of the model, and on the investigated statistic. Whereas simpler methods correct the first moment of the distributions, they can have adverse effects on higher moments. The HE method corrects also higher moments, but approximations of the transfer function are necessary when applying the method to other data than the calibration data. Here, an empirical transfer function with linear fits to the tails is compared to a version where the complete function is approximated by a linear fit. The latter is thus limited to corrections of the first and second moments of the distribution. While making the transfer function more generally applicable, these approximations also limit the performance of the HE method. For the current model biases, the linear approximation is found suitable for precipitation, but for temperature it is not able to correct the whole distribution. The lower performance of the linear correction is most pronounced in summer, and is likely due to a difference in skewness between the model and observational data. Further limitations of the HE method are due to the need for long time series in order to have robust distributions for calculating the transfer function. Theoretical approximations of the required length of the calibration period were performed by using different sampling sizes drawn from a known distribution. The excerise show that about 30 year long time series are needed to have reasonable accuracy for the estimation of variance, when also corrections of the annual cycle is required. (C) 2012 Elsevier B.V. All rights reserved.

  • 5.
    Berg, Peter
    et al.
    SMHI, Research Department, Hydrology.
    Norin, Lars
    SMHI, Research Department, Atmospheric remote sensing.
    Olsson, Jonas
    SMHI, Research Department, Hydrology.
    Creation of a high resolution precipitation data set by merging gridded gauge data and radar observations for Sweden2016In: Journal of Hydrology, ISSN 0022-1694, E-ISSN 1879-2707, Vol. 541, p. 6-13Article in journal (Refereed)
  • 6.
    Bergström, Sten
    et al.
    SMHI, Research Department, Hydrology.
    Graham, Phil
    SMHI, Research Department, Climate research - Rossby Centre.
    Abstract to "On the scale problem in hydrological modelling" [Journal of Hydrology 211 (1998) 253-265]1999In: Journal of Hydrology, ISSN 0022-1694, E-ISSN 1879-2707, Vol. 217, no 3-4, p. 284-284Article in journal (Refereed)
  • 7.
    Bergström, Sten
    et al.
    SMHI, Research Department, Hydrology.
    Graham, Phil
    SMHI, Research Department, Climate research - Rossby Centre.
    On the scale problem in hydrological modelling1998In: Journal of Hydrology, ISSN 0022-1694, E-ISSN 1879-2707, Vol. 211, no 1-4, p. 253-265Article in journal (Refereed)
    Abstract [en]

    The problem of scales and particularly the modelling of macro or continental scale catchments in hydrology is addressed. It is concluded that the magnitude of the scale problem is related to the specific hydrologic problem to be solved and to the scientific approach and perspective of the modeller. A distributed modelling approach, based on variability parameters, is suggested for modelling of soil moisture dynamics and runoff generation. It is shown that the parameters of such an approach are relatively stable over a wide range of scales. An example of the application of a standard Version of the Swedish HBV hydrological model to the continental scale catchment of the Baltic Sea is shown and its usefulness is discussed. (C) 1998 Elsevier Science Ltd. All rights reserved.

  • 8.
    Bringfelt, Björn
    et al.
    SMHI, Research Department, Climate research - Rossby Centre.
    LINDROTH, A
    SYNOPTIC EVAPOTRANSPIRATION MODEL APPLIED TO 2 NORTHERN FORESTS OF DIFFERENT DENSITY1987In: Journal of Hydrology, ISSN 0022-1694, E-ISSN 1879-2707, Vol. 95, no 3-4, p. 185-201Article in journal (Refereed)
  • 9. Falter, Daniela
    et al.
    Schroeter, Kai
    Dung, Nguyen Viet
    Vorogushyn, Sergiy
    Kreibich, Heidi
    Hundecha, Yeshewatesfa
    SMHI, Research Department, Hydrology.
    Apel, Heiko
    Merz, Bruno
    Spatially coherent flood risk assessment based on long-term continuous simulation with a coupled model chain2015In: Journal of Hydrology, ISSN 0022-1694, E-ISSN 1879-2707, Vol. 524, p. 182-193Article in journal (Refereed)
    Abstract [en]

    A novel approach for assessing flood risk in river catchments in a spatially consistent way is presented. The approach is based on a set of coupled models representing the complete flood risk chain, including a multisite, multivariate weather generator, a hydrological model, a coupled 1D-2D hydrodynamic model and a flood loss model. The approach is exemplarily developed for the meso-scale Mulde catchment in Germany. 10,000 years of meteorological fields at daily resolution are generated and used as input to the subsequent models, yielding 10,000 years of spatially consistent river discharge series, inundation patterns and damage values. This allows estimating flood risk directly from the simulated damage. The benefits of the presented approach are: (1) in contrast to traditional flood risk assessments, where homogenous return periods are assumed for the entire catchment, the approach delivers spatially heterogeneous patterns of precipitation, discharge, inundation and damage patterns which respect the spatial correlations of the different processes and their spatial interactions. (2) Catchment and floodplain processes are represented in a holistic way, since the complete chain of flood processes is represented by the coupled models. For instance, the effects of spatially varying antecedent catchment conditions on flood hydrographs are implicitly taken into account. (3) Flood risk is directly derived from damage yielding a more realistic representation of flood risk. Traditionally, the probability of discharge is used as proxy for the probability of damage. However, non-linearities and threshold behaviour along the flood risk chain contribute to substantial variability between damage probabilities and corresponding discharge probabilities. (C) 2015 Elsevier B.V. All rights reserved.

  • 10.
    Harlin, Joakim
    et al.
    SMHI.
    KUNG, CS
    PARAMETER UNCERTAINTY AND SIMULATION OF DESIGN FLOODS IN SWEDEN1992In: Journal of Hydrology, ISSN 0022-1694, E-ISSN 1879-2707, Vol. 137, no 1-4, p. 209-230Article in journal (Refereed)
    Abstract [en]

    This paper examines the effects of parameter uncertainty on the simulation of recorded floods and design floods, using the HBV hydrological model. Two Swedish catchments with hydropower development were studied. A Monte Carlo procedure was used to generate parameter sets of different levels of uncertainty. The results showed that the most sensitive parameters in the calibration process were the snowfall correction factor and the recession parameters. Furthermore, when the model was extrapolated to simulate design flood and water stage hydrographs, the single most sensitive parameter was the highest recession coefficient. In addition, it was found that parameter uncertainty was associated with combinations of parameters rather than the absolute values of each.

  • 11. Hughes, Denis A.
    et al.
    Andersson, Lotta
    SMHI, Core Services.
    Wilk, Julie
    Savenije, Hubert H. G.
    Regional calibration of the Pitman model for the Okavango River2006In: Journal of Hydrology, ISSN 0022-1694, E-ISSN 1879-2707, Vol. 331, no 1-2, p. 30-42Article in journal (Refereed)
    Abstract [en]

    This paper reports on the application of a monthly rainfall-runoff model for the Okavango River Basin. Streamflow is mainly generated in Angola where the Cuito and Cubango rivers arise. They then join and cross the Namibia/Angola border, flowing into the Okavango wetland in Botswana. The model is a modified version of the Pitman model, including more explicit ground and surface water interactions. Significant limitations in access to climatological data, and lack of sufficiently long records of observed flow for the eastern sub-basins represent great challenges to model calibration. The majority of the runoff is generated in the wetter headwater tributaries, while the lower sub-basins are dominated by channel loss processes with very little incremental flow contributions, even during wet years. The western tributaries show significantly higher seasonal variation in flow, compared to the baseflow dominated eastern tributaries: observations that are consistent with their geological differences. The basin was sub-divided into 24 sub-basins, of which 18 have gauging stations at their outlet. Satisfactory simulations were achieved with sub-basin parameter value differences that correspond to the spatial variability in basin physiographic characteristics. The limited length of historical rainfall and river discharge data over Angola precluded the use of a split sample calibration/validation test. However, satellite generated rainfall data, revised to reflect the same frequency characteristics as the historical rainfall data, were used to validate the model against the available downstream flow data during the 1990s. The overall conclusion is that the model, in spite of the limited data access, adequately represents the hydrological response of the basin and that it can be used to assess the impact of future development scenarios. (c) 2006 Elsevier B.V. All rights reserved.

  • 12.
    Hundecha, Yeshewatesfa
    et al.
    SMHI, Research Department, Hydrology.
    Arheimer, Berit
    SMHI, Research Department, Hydrology.
    Donnelly, Chantal
    SMHI, Research Department, Hydrology.
    Pechlivanidis, Ilias
    SMHI, Research Department, Hydrology.
    A regional parameter estimation scheme for a pan-European multi-basin model.2016In: Journal of Hydrology, ISSN 0022-1694, E-ISSN 1879-2707, Vol. 6, p. 90-111Article in journal (Refereed)
  • 13.
    Hundecha, Yeshewatesfa
    et al.
    SMHI, Research Department, Hydrology.
    Sunyer, Maria A.
    Lawrence, Deborah
    Madsen, Henrik
    Willems, Patrick
    Buerger, Gerd
    Kriauciuniene, Jurate
    Loukas, Athanasios
    Martinkova, Marta
    Osuch, Marzena
    Vasiliades, Lampros
    von Christierson, Birgitte
    Vormoor, Klaus
    Yuecel, Ismail
    Inter-comparison of statistical downscaling methods for projection of extreme flow indices across Europe2016In: Journal of Hydrology, ISSN 0022-1694, E-ISSN 1879-2707, Vol. 541, p. 1273-1286Article in journal (Refereed)
  • 14.
    Lidén, Rikard
    et al.
    SMHI, Research Department, Hydrology.
    Harlin, Joakim
    SMHI.
    Analysis of conceptual rainfall-runoff modelling performance in different climates2000In: Journal of Hydrology, ISSN 0022-1694, E-ISSN 1879-2707, Vol. 238, no 3-4, p. 231-247Article in journal (Refereed)
    Abstract [en]

    With the objective of studying conceptual rainfall-runoff modelling performance in different climates, the HBV-96 model was applied on four catchments located in Europe, Africa and South America. Manual, automatic and Monte Carlo techniques were used for model calibration and parameter analyses. It was found that the magnitude of the water balance components had a significant influence on model performance. Performance decreased and demands of calibration period length increased with increased catchment dryness primarily because of a neater water balance and higher climatic variability in drier areas. A large degree of equifinality was discovered in all catchments where different calibration methods yielded equally good results but with different parameter combinations. Thus, it may be impossible to know if an optimum parameter set exists and to relate parameter values to physical properties of the catchment. On the other hand the validation results indicated that it might not matter if parameter values were not unique when studying runoff solely, provided the model application is within the same regime of flows. (C) 2000 Elsevier Science B.V. AU rights reserved.

  • 15.
    Lindström, Göran
    et al.
    SMHI, Research Department, Hydrology.
    Johansson, Barbro
    SMHI, Professional Services.
    Persson, Magnus
    SMHI.
    Gardelin, Marie
    SMHI, Professional Services.
    Bergström, Sten
    SMHI, Research Department, Hydrology.
    Development and test of the distributed HBV-96 hydrological model1997In: Journal of Hydrology, ISSN 0022-1694, E-ISSN 1879-2707, Vol. 201, no 1-4, p. 272-288Article in journal (Refereed)
    Abstract [en]

    A comprehensive re-evaluation of the HBV hydrological model has been carried out. The objectives were to improve its potential for making use of spatially distributed data, to make it more physically sound and to improve the model performance. The new version, HBV-96, uses subbasin division with a typical resolution of 40 km(2), although any resolution can be used. In addition, each subbasin is divided into elevation bands, vegetation and snow classes. Automatic weighting of precipitation and temperature stations was introduced and a new automatic calibration scheme was developed. The modifications led to significant improvements in model performance. In seven test basins the average value of the efficiency criterion R-2 increased from 86 to 89%, with improvements in both the calibration and verification periods. (C) 1997 Elsevier Science B.V.

  • 16.
    Michelson, Daniel
    SMHI, Core Services.
    Systematic correction of precipitation gauge observations using analyzed meteorological variables2004In: Journal of Hydrology, ISSN 0022-1694, E-ISSN 1879-2707, Vol. 290, no 3-4, p. 161-177Article in journal (Refereed)
    Abstract [en]

    Precipitation gauge measurements suffer from several sources Of error, the most significant of which is the wind error caused by the flow distortion about the gauge orifice. An existing statistical Dynamic Correction Model (DCM) has been implemented with the intent to perform a systematic correction of precipitation measurements front gauges found in and near the Baltic Sea's drainage basin. The DCM implementation makes use of hourly gridded meteorological variables from an operational mesoscale analysis system. precipitation amounts are disaggregated into hourly components, corrected, and then summed back to yield corrected 12-hour accumulations. Sensitivity Studies for shielded H & H-90, Tretyakov, SMHI, and unshielded Hellmann gauge types demonstrate the behaviour of the DCM; the H & H-90 gauge requires the least amount of correction whereas the unshielded Hellmann gauge requires by far the most. This DCM implementation has been evaluated using two years of independent gauge data from the so-called Double Fence Intercomparison Reference (DFIR) gauge, along with independent H & H-90 observations, at Jokioinen, Finland. The results show that the H & H-90 gauge underestimates precipitation by around 8% on average and that the implementation appears to yield results which are fully consistent with previous findings and experience at this site. A second evaluation was performed with one year of measurements from Kiel, Germany, using data from a ship rain gauge (SRG) as a reference and data from two Hellmann gauges. one co-located with the SRG and the other 5.6 km distant. The results from this evaluation are more ambiguous but reveal both an overcorrection and an increased variability in the derived relation compared with uncorrected observations, one explanation being a well shielded site which the method, by its general nature, does not take into account. Although uncertainties remain in the treatment of measurements from some gauge types, systematic correction using this DCM should lead to more accurate measurements for use in hydrometeorological applications. (C) 2004 Elsevier B.V. All rights reserved.

  • 17.
    Olsson, Jonas
    et al.
    SMHI, Research Department, Hydrology.
    Lindström, Göran
    SMHI, Research Department, Hydrology.
    Evaluation and calibration of operational hydrological ensemble forecasts in Sweden2008In: Journal of Hydrology, ISSN 0022-1694, E-ISSN 1879-2707, Vol. 350, no 1-2, p. 14-24Article in journal (Refereed)
    Abstract [en]

    Daily operational hydrological 9-day ensemble forecasts during 18 months in 45 catchments were evaluated in probabilistic terms. The forecasts were generated by using ECMWF meteorological ensemble forecasts as input to the HBV model, set up and calibrated for each catchment. Two kinds of reference discharges were used in the evaluation, "perfect forecasts" and actual discharge observations. A percentile-based evaluation indicated that the ensemble spread is underestimated, with a degree that decreases with increasing lead time. The share of this error related to hydrological model uncertainty was found to be similar in magnitude to the share related to underdispersivity in the ECMWF meteorological forecasts. A threshold-based evaluation indicated that the probability of exceeding a high discharge threshold is generally overestimated in the ensemble forecasts, with a degree that increases with probability level. In this case the contribution to the error from the meteorological forecasts is larger than the contribution from the hydrological model. A simple calibration method to adjust the ensemble spread by bias correction of ensemble percentiles was formulated and tested in five catchments. The method substantially improved the ensemble spread in all tested catchments, and the adjustment parameters were found to be reasonably well estimated as simple functions of the mean catchment discharge. (c) 2007 Elsevier B.V. All rights reserved.

  • 18. van den Hurk, B J J M
    et al.
    Graham, Phil
    SMHI, Research Department, Climate research - Rossby Centre.
    Viterbo, P
    Comparison of land surface hydrology in regional climate simulations of the Baltic Sea catchment2002In: Journal of Hydrology, ISSN 0022-1694, E-ISSN 1879-2707, Vol. 255, no 1-4, p. 169-193Article in journal (Refereed)
    Abstract [en]

    Simulations with a regional climate model RACMO were carried out over the catchment area of the Baltic Sea for the growing season 1995. Two different surface schemes were included which in particular differed with respect to the parameterization of runoff. In the first scheme (taken from ECHAM4), runoff is a function of the subgrid distribution of the soil moisture saturation. In the second model (taken from ECMWF), runoff is a result of deep-water drainage. A large-scale hydrological model of the catchment, HBV-Baltic, was calibrated to river discharge data and forced with observed precipitation, yielding independent comparison material of runoff of the two RACMO simulations. The simulations showed that the temporal and spatial simulation of precipitation in the area is sensitive to the choice of the land surface scheme in RACMO. This supported the motivation of analysing the land surface hydrological budgets in a coupled mode. The comparison of RACMO with HBV-Baltic revealed that the frequency distribution of runoff in the ECMWF scheme shows very little runoff variability at high frequencies, while in ECHAM4 and HBV the snow melt and (liquid) precipitation are followed by fast responding runoff events. The seasonal cycle of soil water depletion and surface evaporation was evaluated by comparison of model scores with respect to relative humidity. Results suggest that the surface evaporation in the ECMWF scheme is too strong in late spring and early summer, giving rise to too much drying later in the season. (C) 2002 Elsevier Science B.V. All rights reserved.

  • 19. van Vliet, Michelle T. H.
    et al.
    Donnelly, Chantal
    SMHI, Research Department, Hydrology.
    Strombäck, Lena
    SMHI, Research Department, Hydrology.
    Capell, Réne
    SMHI, Research Department, Hydrology.
    Ludwig, Fulco
    European scale climate information services for water use sectors2015In: Journal of Hydrology, ISSN 0022-1694, E-ISSN 1879-2707, Vol. 528, p. 503-513Article in journal (Refereed)
    Abstract [en]

    This study demonstrates a climate information service for pan-European water use sectors that are vulnerable to climate change induced hydrological changes, including risk and safety (disaster preparedness), agriculture, energy (hydropower and cooling water use for thermoelectric power) and environment (water quality). To study the climate change impacts we used two different hydrological models forced with an ensemble of bias-corrected general circulation model (GCM) output for both the lowest (2.6) and highest (8.5) representative concentration pathways (RCP). Selected indicators of water related vulnerability for each sector were then calculated from the hydrological model results. Our results show a distinct north-south divide in terms of climate change impacts; in the south the water availability will reduce while in the north water availability will increase. Across different climate models precipitation and streamflow increase in northern Europe and decrease in southern Europe, but the latitude at which this change occurs varies depending on the GCM. Hydrological extremes are increasing over large parts of Europe. The agricultural sector will be affected by reduced water availability (in the south) and increased drought. Both streamflow and soil moistures droughts are projected to increase in most parts of Europe except in northern Scandinavia and the Alps. The energy sector will be affected by lower hydropower potential in most European countries and reduced cooling water availability due to higher water temperatures and reduced summer river flows. Our results show that in particular in the Mediterranean the pressures are high because of increasing drought which will have large impacts on both the agriculture and energy sectors. In France and Italy this is combined with increased flood hazards. Our results show important impacts of climate change on European water use sectors indicating a clear need for adaptation. (C) 2015 Published by Elsevier B.V.

  • 20. Wilk, Julie
    et al.
    Kniveton, Dominic
    Andersson, Lotta
    SMHI, Core Services.
    Layberry, Russell
    Todd, Martin C.
    Hughes, Denis
    Ringrose, Susan
    Vanderpost, Cornelis
    Estimating rainfall and water balance over the Okavango River Basin for hydrological applications2006In: Journal of Hydrology, ISSN 0022-1694, E-ISSN 1879-2707, Vol. 331, no 1-2, p. 18-29Article in journal (Refereed)
    Abstract [en]

    A historical database for use in rainfall-runoff modeling of the Okavango River Basin in Southwest Africa is presented. The work has relevance for similar data-sparse regions. The parameters of main concern are rainfall and catchment water balance, which are key variables for subsequent studies of the hydrological impacts of development and climate change. Rainfall estimates are based on a combination of in situ gauges and satellite sources. Rain gauge measurements are most extensive from 1955 to 1972, after which they are drastically reduced due to the Angolan civil war. The sensitivity of the rainfall fields to spatial interpolation techniques and the density of gauges were evaluated. Satellite based rainfall estimates for the basin are developed for the period from 1991 onwards, based on the Tropical Rainfall Measuring Mission (TRMM) and Special Sensor Microwave Imager (SSM/I) datasets. The consistency between the gauges and satellite estimates was considered. A methodology was developed to allow calibration of the rainfall-runoff hydrological model against rain gauge data from 1960 to 1972, with the prerequisite that the model should be driven by satellite derived rainfall products from ` 1990 onwards. With the rain gauge data, addition of a single rainfall station (Longa) in regions where stations earlier were lacking was more important than the chosen interpolation method. Comparison of satellite and gauge rainfall outside the basin indicated that the satellite overestimates rainfall by 20%. A non-linear correction was derived by fitting the rainfall frequency characteristics to those of the historical rainfall data. This satellite rainfall dataset was found satisfactory when using the Pitman rainfall-runoff model (Hughes, D., Andersson, L., Wilk, J., Savenije, H.H.G., this issue. Regional calibration of the Pitman model for the Okavango River. Journal of Hydrology). Intensive monitoring in the region is recommended to increase accuracy of the comprehensive satellite rainfall estimate calibration procedure. (c) 2006 Elsevier B.V. All rights reserved.

  • 21. Worman, A.
    et al.
    Lindström, Göran
    SMHI, Research Department, Hydrology.
    Riml, Joakim
    SMHI, Research Department, Hydrology.
    The power of runoff2017In: Journal of Hydrology, ISSN 0022-1694, E-ISSN 1879-2707, Vol. 548, p. 784-793Article in journal (Refereed)
1 - 21 of 21
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.8
|