Endre søk
Begrens søket
1 - 3 of 3
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1. Friman, Mathias
    et al.
    Strandberg, Gustav
    SMHI, Forskningsavdelningen, Klimatforskning - Rossby Centre.
    Historical responsibility for climate change: science and the science-policy interface2014Inngår i: Wiley Interdisciplinary Reviews: Climate Change, ISSN 1757-7780, E-ISSN 1757-7799, Vol. 5, nr 3, s. 297-316Artikkel, forskningsoversikt (Fagfellevurdert)
    Abstract [en]

    Since 1990, the academic literature on historical responsibility (HR) for climate change has grown considerably. Over these years, the approaches to defining this responsibility have varied considerably. This article demonstrates how this variation can be explained by combining various defining aspects of historical contribution and responsibility. Scientific knowledge that takes for granted choices among defining aspects will likely become a basis for distrust within science, among negotiators under the United Nations Framework Convention on Climate Change (UNFCCC), and elsewhere. On the other hand, for various reasons, not all choices can be explicated at all times. In this article, we examine the full breadth of complexities involved in scientifically defining HR and discuss how these complexities have consequences for the science-policy interface concerning HR. To this end, we review and classify the academic literature on historical contributions to and responsibility for climate change into categories of defining aspects. One immediately policy-relevant conclusion emerges from this exercise: Coupled with negotiators' highly divergent understandings of historical responsibility, the sheer number of defining aspects makes it virtually impossible to offer scientific advice without creating distrust in certain parts of the policy circle. This conclusion suggests that scientific attempts to narrow the options for policymakers will have little chance of succeeding unless policymakers first negotiate a clearer framework for historical responsibility. For further resources related to this article, please visit the . Conflict of interest: The authors have declared no conflicts of interest for this article.

  • 2. Lucas-Picher, Philippe
    et al.
    Argueso, Daniel
    Brisson, Erwan
    Tramblay, Yves
    Berg, Peter
    SMHI, Forskningsavdelningen, Hydrologi.
    Lemonsu, Aude
    Kotlarski, Sven
    Caillaud, Cecile
    Convection-permitting modeling with regional climate models: Latest developments and next steps2021Inngår i: Wiley Interdisciplinary Reviews: Climate Change, ISSN 1757-7780, E-ISSN 1757-7799, artikkel-id e731Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Approximately 10 years ago, convection-permitting regional climate models (CPRCMs) emerged as a promising computationally affordable tool to produce fine resolution (1-4 km) decadal-long climate simulations with explicitly resolved deep convection. This explicit representation is expected to reduce climate projection uncertainty related to deep convection parameterizations found in most climate models. A recent surge in CPRCM decadal simulations over larger domains, sometimes covering continents, has led to important insights into CPRCM advantages and limitations. Furthermore, new observational gridded datasets with fine spatial and temporal (similar to 1 km; similar to 1 h) resolutions have leveraged additional knowledge through evaluations of the added value of CPRCMs. With an improved coordination in the frame of ongoing international initiatives, the production of ensembles of CPRCM simulations is expected to provide more robust climate projections and a better identification of their associated uncertainties. This review paper presents an overview of the methodology to produce CPRCM simulations and the latest research on the related added value in current and future climates. Impact studies that are already taking advantage of these new CPRCM simulations are highlighted. This review paper ends by proposing next steps that could be accomplished to continue exploiting the full potential of CPRCMs. This article is categorized under: Climate Models and Modeling > Earth System Models

    Fulltekst (pdf)
    Convection-permitting modeling with regional climate models: Latest developments and next steps
  • 3.
    Rummukainen, Markku
    SMHI, Samhälle och säkerhet.
    State-of-the-art with regional climate models2010Inngår i: Wiley Interdisciplinary Reviews: Climate Change, ISSN 1757-7780, E-ISSN 1757-7799, Vol. 1, nr 1, s. 82-96Artikkel, forskningsoversikt (Fagfellevurdert)
    Abstract [en]

    Regional climate models are used by a large number of groups, for more or less all regions of the world. Regional climate models are complementary to global climate models. A typical use of regional climate models is to add further detail to global climate analyses or simulations, or to study climate processes in more detail than global models allow. The relationship between global and regional climate models is much akin to that of global and regional weather forecasting models. Over the past 20 years, the development of regional climate models has led to increased resolution, longer model runs, and steps towards regional climate system models. During recent years, community efforts have started to emerge in earnest, which can be expected to further advance the state-of-the-art in regional climate modeling. Applications of regional climate models span both the past and possible future climates, facilitating climate impact studies, information and support to climate policy, and adaptation. (C) 2010 John Wiley & Sons, Ltd. WIREs Clim Change 2010 1 82-96

1 - 3 of 3
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf