Change search
Refine search result
1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Astrom, Christofer
    et al.
    Astrom, Daniel Oudin
    Andersson, Camilla
    SMHI, Research Department, Air quality.
    Ebi, Kristie L.
    Forsberg, Bertil
    Vulnerability Reduction Needed to Maintain Current Burdens of Heat-Related Mortality in a Changing Climate-Magnitude and Determinants2017In: International Journal of Environmental Research and Public Health, ISSN 1661-7827, E-ISSN 1660-4601, Vol. 14, no 7, article id 741Article in journal (Refereed)
  • 2. Astrom, Christofer
    et al.
    Ebi, Kristie L.
    Langner, Joakim
    SMHI, Research Department, Air quality.
    Forsberg, Bertil
    Developing a Heatwave Early Warning System for Sweden: Evaluating Sensitivity of Different Epidemiological Modelling Approaches to Forecast Temperatures2015In: International Journal of Environmental Research and Public Health, ISSN 1661-7827, E-ISSN 1660-4601, Vol. 12, no 1, p. 254-267Article in journal (Refereed)
    Abstract [en]

    Over the last two decades a number of heatwaves have brought the need for heatwave early warning systems (HEWS) to the attention of many European governments. The HEWS in Europe are operating under the assumption that there is a high correlation between observed and forecasted temperatures. We investigated the sensitivity of different temperature mortality relationships when using forecast temperatures. We modelled mortality in Stockholm using observed temperatures and made predictions using forecast temperatures from the European Centre for Medium-range Weather Forecasts to assess the sensitivity. We found that the forecast will alter the expected future risk differently for different temperature mortality relationships. The more complex models seemed more sensitive to inaccurate forecasts. Despite the difference between models, there was a high agreement between models when identifying risk-days. We find that considerations of the accuracy in temperature forecasts should be part of the design of a HEWS. Currently operating HEWS do evaluate their predictive performance; this information should also be part of the evaluation of the epidemiological models that are the foundation in the HEWS. The most accurate description of the relationship between high temperature and mortality might not be the most suitable or practical when incorporated into a HEWS.

  • 3. Geels, Camilla
    et al.
    Andersson, Camilla
    SMHI, Research Department, Air quality.
    Hanninen, Otto
    Lanso, Anne Sofie
    Schwarze, Per E.
    Skjoth, Carsten Ambelas
    Brandt, Jorgen
    Future Premature Mortality Due to O-3, Secondary Inorganic Aerosols and Primary PM in Europe - Sensitivity to Changes in Climate, Anthropogenic Emissions, Population and Building Stock2015In: International Journal of Environmental Research and Public Health, ISSN 1661-7827, E-ISSN 1660-4601, Vol. 12, no 3, p. 2837-2869Article in journal (Refereed)
    Abstract [en]

    Air pollution is an important environmental factor associated with health impacts in Europe and considerable resources are used to reduce exposure to air pollution through emission reductions. These reductions will have non-linear effects on exposure due, e.g., to interactions between climate and atmospheric chemistry. By using an integrated assessment model, we quantify the effect of changes in climate, emissions and population demography on exposure and health impacts in Europe. The sensitivity to the changes is assessed by investigating the differences between the decades 2000-2009, 2050-2059 and 2080-2089. We focus on the number of premature deaths related to atmospheric ozone, Secondary Inorganic Aerosols and primary PM. For the Nordic region we furthermore include a projection on how population exposure might develop due to changes in building stock with increased energy efficiency. Reductions in emissions cause a large significant decrease in mortality, while climate effects on chemistry and emissions only affects premature mortality by a few percent. Changes in population demography lead to a larger relative increase in chronic mortality than the relative increase in population. Finally, the projected changes in building stock and infiltration rates in the Nordic indicate that this factor may be very important for assessments of population exposure in the future.

  • 4.
    Segersson, David
    et al.
    SMHI, Research Department, Air quality.
    Eneroth, Kristina
    Gidhagen, Lars
    SMHI, Research Department, Air quality.
    Johansson, Christer
    Omstedt, Gunnar
    SMHI, Research Department, Air quality.
    Nylen, Anders Engstrom
    Forsberg, Bertil
    Health Impact of PM10, PM2.5 and Black Carbon Exposure Due to Different Source Sectors in Stockholm, Gothenburg and Umea, Sweden2017In: International Journal of Environmental Research and Public Health, ISSN 1661-7827, E-ISSN 1660-4601, Vol. 14, no 7, article id 742Article in journal (Refereed)
  • 5. Yin, Yunxing
    et al.
    Jiang, Sanyuan
    Pers, Charlotta
    SMHI, Research Department, Hydrology.
    Yang, Xiaoying
    Liu, Qun
    Yuan, Jin
    Yao, Mingxing
    He, Yi
    Luo, Xingzhang
    Zheng, Zheng
    Assessment of the Spatial and Temporal Variations of Water Quality for Agricultural Lands with Crop Rotation in China by Using a HYPE Model2016In: International Journal of Environmental Research and Public Health, ISSN 1661-7827, E-ISSN 1660-4601, Vol. 13, no 3Article in journal (Refereed)
    Abstract [en]

    Many water quality models have been successfully used worldwide to predict nutrient losses from anthropogenically impacted catchments, but hydrological and nutrient simulations with limited data are difficult considering the transfer of model parameters and complication of model calibration and validation. This study aims: (i) to assess the performance capabilities of a new and relatively more advantageous model, namely, Hydrological Predictions for the Environment (HYPE), that simulates stream flow and nutrient load in agricultural areas by using a multi-site and multi-objective parameter calibration method and (ii) to investigate the temporal and spatial variations of total nitrogen (TN) and total phosphorous (TP) concentrations and loads with crop rotation by using the model for the first time. A parameter estimation tool (PEST) was used to calibrate parameters. Results show that the parameters related to the effective soil porosity were highly sensitive to hydrological modeling. N balance was largely controlled by soil denitrification processes. P balance was influenced by the sedimentation rate and production/decay of P in rivers and lakes. The model reproduced the temporal and spatial variations of discharge and TN/TP relatively well in both calibration (2006-2008) and validation (2009-2010) periods. Among the obtained data, the lowest Nash-Suttclife efficiency of discharge, daily TN load, and daily TP load were 0.74, 0.51, and 0.54, respectively. The seasonal variations of daily TN concentrations in the entire simulation period were insufficient, indicated that crop rotation changed the timing and amount of N output. Monthly TN and TP simulation yields revealed that nutrient outputs were abundant in summer in terms of the corresponding discharge. The area-weighted TN and TP load annual yields in five years showed that nutrient loads were extremely high along Hong and Ru rivers, especially in agricultural lands.

1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.7
|