Concentrations of NO2, PM10 and PM2.5 have been calculated for the whole of Sweden for the year 2019 as well as two scenarios for 2030 in this study. Calculations have been performed using a new methodology, allowing almost seam-less combination of dispersion modelling at regional and urban scale without double-counting emissions. The concentrations have been calculated at 250x250 m2 resolution, producing a uniquely complete and detailed dataset at national scale. The methodology used can well reproduce the measured pollution levels at most urban background stations in the modelling domain. The spatial resolution of 250 m captures concentration gradients that are of importance for exposure calculations. An important strength of using dispersion modelling to calculate concentrations is the direct relation with emission inventories, allowing for source attribution and scenario evaluation that is consistent with emission inventories and projections.
The modelled concentrations are used together with gridded population data in order to calculate exposure. The annual average population weighted exposure is 5.08 µg/m3 for NO2, 9.95 µg/m3 for PM10 and 5.21 µg/m3 for PM2.5 in 2019. A large decrease, by approximately 2 µg/m3, is seen for exposure to NO2 in 2030 compared to 2019. The exposure to PM10 and PM2.5 is also decreasing in 2030, but not as drastically, by about 0.2 µg/m3.
A general conclusion is that exposure is higher in the age span of 21-50 years. An explanation is that these age groups more often live in urban areas, where there are more emissions and higher concentrations of pollution.
Zero percent of the population is exposed to levels above the annual air quality standards for NO2, PM10 and PM2.5 for 2019 and 2030. It is to be noted that the model results represent annual averaged urban background concentrations, not local hotspot concentrations.
The modelled exposures to PM2.5 and urban NO2 have been used for a national health impact assessment. The health impact assessment is similar to an earlier study of premature deaths and incident cases of mainly chronic diseases. Our results differ to a varying degree from similar impact assessments. Most important among the complicated reasons for differences in the estimated health impacts are the assumed exposure-response functions for the specific exposures, the slope and if there is a lower threshold below which no association exists. We have in this study decided to follow the strong evidence from high quality epidemiological studies that the exposure-response relationship between long-term exposure to PM2.5 and total mortality in adults is supra-linear with a much steeper slope at the lower end, with stronger effects of near source exposure, and no evidence of a threshold level below which no effects are observed. When adding the yearly number of premature deaths attributed to the regional background PM2.5 levels and the deaths associated with PM2.5 exposure from local sources, the total number becomes 4 264 deaths related to the fine particle exposure situation in 2019. At the same time, the urban contribution of NO2 is estimated to result in additional 428 premature deaths per year.
In 2030 the population exposure to PM2.5 from the regional background is expected to be about 2% lower and from urban sources 22% lower compared to 2019, which indicates how much the attributed number of preterm deaths would change if everything else stays the same.