System disruptions
We are currently experiencing disruptions on the search portals due to high traffic. We are working to resolve the issue, you may temporarily encounter an error message.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Statistisk analys av nederbördsdata: Del I. Arealnederbörd
SMHI.
1979 (Swedish)Report (Other academic)Alternative title
Statistiscal analysis of precipitation. Part I. Area precipitation data. (English)
Abstract [sv]

Nederbördsdata avseende medelvärde över stora areor har analyserats ur två synvinklar. Dels har data betraktats som tidsserier, dels som stickprov.

Inledningsvis analyseras felkällor hos datamaterialet. Det konstateras att arealvärdena kan vara underskattade med c:a 30% varav halva beloppet beror på stationsfördelningen, andra hälften på förluster av olika slag vid nederbördsmätningarna.

Tidsserieanalysen består av en undersökning om seriernaär stationära. Testet, ett sk run-test, som användes,visar att så tycks vara fallet . En undersökning görs av frekvensen av perioder med samma tecken på anomalierna. Dessa frekvenser jämförs med dels vad ren slumpprocess skulle ge, dels mot modeller med låga autokorrelationer. Bästa överensstämmelsen erhölls med slumpmodellen. Några av tidsserierna har filtrerats med "låg-pass" -filter. Filtreringen gav samma resultat som run-testet, nämligen att några lineära eller cykliska trender ej tycks förekomma i serierna.

Den andra avdelningen av föreliggande rapport betraktar data som stickprov ur populationer, vars utseende och parametrar det gäller att bestämma. Följande teoretiska fördelningsfunktioner prövades: Normal-,lognormal( både två och tre parametrar), gamma- (både två och tre parametrar), Weibull- och Fisher- Tippett- (typ I) fördelningar . Dessa fördelningars parametrar skattades antingen medelst maximum-likelihood- eller momentmetoden. x2 - test gav inget klart utslag, vilken av de sju prövade fördelningarna som är mest användbar. Enda tämligen klara indikation detta test gav var att lognormalfördelningen med tre parametrar var minst lämpad. Dessutom visade testet att gammafördelning med tre parametrar ej hade några fördelar gentemot ordinarie r-fördelning. Genom att studera fördelningarnas ytterområden kunde kunstateras att normal- och lognormalfördelningarna ej gav godtagbar beskrivning av observerade data. Valet kom att stå mellan r-och Weibullfördelningarna. Vissa fakta talar förr andraför Weibull. Percentilvärden P 01, P05, P10, P25, P 50, P75, P90, P95 och P99 beräknade från r-fördelning presenteras, medan för Weibullfördelning endast, P 01,P05, P95 och P99 redovisas. Ett förslag till klimatologisk terminologi läggs fram. Variationsområdet för en klimatvariabel föreslås indelas i 7 klasser omfattande 1, 4, 20, 50, 20, 4 resp.1% av frekvensytan. Värden som hamnar i ytterklasserna, dvs kan förväntas inträffa en gång på 100 år bör kallas extrema värden. Värden i mellersta klassen föreslås benämnas normala. Slutligen ges en lista på de 10 värden som enligt gammafördelningen har den lägsta klimatologiska sannolikheten. Några fall med exceptionellt låg sannolikhet redovisas.

Abstract [en]

Precipitation data on mean values for large areas have been analysed from two points of view. In the first section of this report the data have been looked upon as time series. In the second section they have been regarded as samples from a population.

The reliability of the data is discussed. It is stated that the values are underestimated. The correction factor may be as high as 30%. Half of this correction is related to the representativity of the precipitation network and is mainly due to the fact that the proportion of stations at high levels is too low. The other half is related to measurement errors, mainly losses due to wind, turbulence and evaporation.

The time series analysis consists of three parts. In the first one a ' so-called run-test is used to investigate the stationarity of the series. There seemst o be no reason to reject the hypothesis that the series are stationary. After that the frequencies of long runs are X2 -tested against a random model and against models with very low autocorrelation lag- one coefficients. The best fit is found for the model without autocorrelation. In the third part some of the series are filtered with low-pass filters. The results are in accordance with the run-test viz that there are no detectable trends neither linear nor cyclic.

In the second section seven different distribution functions are tested. The following ones are used: Normal, log-normal (both two and three parameters), gamma (two and three parameters), Weibull and FisherTippett type I. The parameters of these functions are estimated with the maximum-likelihood method or the momentum method. The x2 -test gave no definit answer to the question which one is the mast suitable function. It was possible to reject the lagnormal distribution with three parameters, and the threeparameter r-distribution had no advantage compared with the two-parameter version.

By studying the outermost values of the distributions it was evident that neither the normal nor the lognormal distribution were able to fit the observed data satisfactory. It was not possible to say which of the two distributions, r or Weibull, is the best one. For very low and even very high values the Weibull distribution seems to be able to describe the observedvalues somewhat better than the gamma distribution can do. Arguments can be delivered both in the favour of rand of Weibull.

The percentiles, according to the gamma distribution, P01, P05, P10, P25, P50, P75, P90, P95 and P99 are presented . Even P01, P05, P95 and P99 calculated from Weibull distribution are given.

Those monthly values laying outside P01 and P99 as well as those outside P05 and P95 are listed both according to gamma and Weibull distributions.

A proposal to a climatological terminologi is presented. The range of a climatological variable is divided into 7 classes. These classes contains 1, 4, 20, 50, 20, 4 respectively 1% of the events. The values belonging to the outmost classes are called extreme values, those in the middle class should be called normal values.

At the end of the report a list is given of the 10 events, which, according to gamma distributions, have the lowest climatological probability. Some cases have extremely low probabilities.

Place, publisher, year, edition, pages
SMHI , 1979. , p. 73
Series
RMK: Report Meteorology and Climatology, ISSN 0347-2116 ; 16
Keywords [sv]
nederbörd, medelvärden, spridning
National Category
Meteorology and Atmospheric Sciences Climate Science
Research subject
Meteorology; Climate
Identifiers
URN: urn:nbn:se:smhi:diva-2735Local ID: Meteorologi, Rapporter, Serie RMKOAI: oai:DiVA.org:smhi-2735DiVA, id: diva2:948031
Available from: 1979-09-18 Created: 2016-07-08 Last updated: 2025-02-01Bibliographically approved

Open Access in DiVA

fulltext(8976 kB)82 downloads
File information
File name FULLTEXT01.pdfFile size 8976 kBChecksum SHA-512
af86bc9a3b0b6542af72b5a1cf955be25fa4e86a76f18eb598249b09ed997214ecbee309b53445f895849c447ecb7e00c8f8a6825a9941f23f12a9812c81bea5
Type fulltextMimetype application/pdf

By organisation
SMHI
Meteorology and Atmospheric SciencesClimate Science

Search outside of DiVA

GoogleGoogle Scholar
Total: 82 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 366 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf