För att tjäna som ett hjälpmedel för lokalprognoser och flygplatsprognoser har vid SMHI startats ett arbete med att utveckla en atmosfärisk gränsskiktsmodell. Modellen ska kopplas till en storskalig, numerisk prognosmodell som förser den med variabla randvärden för vind, temperatur och fuktighet. Istället för att använda de vanliga Ekman-ekvationerna har använts en metod utvecklad av L N Gutman (1969) fär att härleda gränsskiktsekvationerf ör en en-dimensionell modell. Dessa ekvationer har fördelen att de filtrerar bort de tröghet-diffusionssvängningar som är närvarande i ett Ekman-skikt när den geostrofiska vinden varierar i tiden.
En enkel, torr version av modellen har utnyttjats för att studera effekten av variationen i tiden av bakgrundsvinden (den storskaliga vinden). En turbulent utbyteskoefficient, som är grundad på Manin & Obukhovs similaritetsteori och som använder Blackadars reduktion av blandningslängden, har använts i dessa experiment. Crank-Nicolson-metoden har utnyttjats vid den numeriska tidsintegrationen. Beräkningsresultaten visar att det blir stora skillnader mellan vinden beräknad ur den icke-stationära modellen och motsvarande stationära lösningar. Detta visas med vindhodografer vid olika tidpunkter samt med figurer med friktionshastigheten, u*, och tvärisobara vinkeln som funktion av tiden. Slutligen har också en jämförelse gjorts mellan två olika analytiska lösningar samt en finit differenslösning, från vilka värmeflödena vid jordytan, beroende på värmeledning, i marken som funktion av tiden har beräknats.
To serve as an aid in preparing lecal ferecasts as well as landing ferecasts at airports, a develepment ef an atmospheric boundary layer model has been started at SMHI. The model is going to use large scale wind, temperature and moisture predictions from a numerical weather prediction model as variable boundary conditions. Instead ef using the ordinary Ekman boundary layer equations an approach due te L N Gutman (1969) has been used in deriving a set of one-dimensional boundary layer equations. It is shown that this formulation filters out inertial- diffusive oscillations, which are present in an Ekman boundary layer due to time variation in the geostrephic wind.
Experiments with variable large scale winds have been done, using a simple dry medel with prescribed variations in the boundary values for wind and temperature. A turbulent exchange coefficient formulation has been used, which is based on Monin & Obukhov´s similarity theory and which uses a mixing length formulation due to Blackadar. For the numerical solution a Crank-Nicolson scheme has been used. The computations show large differences between the steady state and the unsteady state solutions.This is shown in wind hodegraphs as well as in time functions of friction velocity,u* and cross isobar angle. Finally, from two different analytical solutions as well as a finite difference solution of the heat conduction equation, heat fluxes at the earth's surface due to heat conduction in the soil have been computed. These analytical solutions have been compared in terms of accuracy and efficiency.