I HBV-modellen, liksom i många andra begreppsmässiga modeller används en enkel graddagmetod för snösmältningsberäkningar. Det har erfarenhetsmässigt visat sig svårt att med mer komplicerade uttryck för snösmältningen förbättra beräkningen av avrinning. Samtidigt har vi sett att de fel som uppstår i HBV-modellen i samband med snösmältning ibland uppträder samtidigt i flera områden. De är alltså inte slumpmässiga, och kan inte enbart förklaras av osäkerheten i de indata som används rutinmässigt. Det tycks som om det i de aktuella vädersituationerna finns en eller flera faktorer som modellen inte tar hänsyn till. I stället för att testa olika komplicerade modeller för snösmältning har, i det här projektet, ett försök gjorts att angripa problemet från motsatt håll. Vi har försökt hitta en koppling mellan meteorologiska förhållanden och modellfel. Speciellt har vi tittat på temperaturens höjdberoende. Studien har genomförts i sex avrinningsområden i den svenska fjällkedjan, och med data från 1975 till 1997.
För temperaturens höjdberoende utnyttjades data från tre näraliggande stationspar på olika höjd. I HBV-modellen antas vanligen att temperaturen avtar med 0.6°C per 100m. I verkligheten visade sig temperaturgradienten variera kraftigt, och även vid temperaturer över 0°C kunde det inträffa att temperaturen ökade med höjden. Ett svagt samband kunde skönjas mellan temperaturens dygnsvariation vid den lägsta stationen och temperaturgradienten. Däremot gav det inga generella förbättringar i simulerad avrinning att föra in en varierande temperaturgradient i HBV-modellen.
Vid jämförelserna mellan volymfel och meteorologiska förhållanden kunde endast tendenser till samband påvisas, och då framför allt under vårflodens start. Det tycks som om HBV-modellen oftare underskattar volymen när det blåser mycket, är hög luftfuktighet och/eller molnigt väder, och att volymen oftare överskattas när det är varmt och vackert väder. Detta är i överensstämmelse med energibalansekvationen, med tillförseln av sensibelt värme vid höga vindhastigheter och latent värme vid hög luftfuktighet. Vid vackert väder är det däremot möjligt att en del av den tillgängliga energin går till avdunstning i stället för smältning.
Resultaten visar återigen att det är svårt att hitta vägar att förbättra beräkning av snösmältning på avrinningsområdesskala. Ett viktigt skäl är osäkerheten i indata. Data från ett fåtal meteorologiska stationer på låg höjd skall extrapoleras över stora avstånd, både vertikalt och horisontellt. De fel som orsakas av detta gör det svårt att särskilja fel som orsakas av en oriktig fysikalisk beskrivning av processerna. En annan generell svårighet vid all modellutveckling är problemet med kompenserande fel. Det innebär att vissa komponenter i ursprungsmodellen oftast innehåller förenklingar eller brister som kompenseras genom justeringar i andra delar av modellen. Slutresultatet kan ofta bli bra, men det kan bli svårt att förbättra modellen eftersom en bättre beskrivning av en viss del kan ta bort denna kompenserande verkan. Därmed blir slutresultatet sämre trots att en enskild process beskrivs mer realistiskt.