Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A regional air quality forecasting system over Europe: the MACC-II daily ensemble production
SMHI, Research Department, Air quality.ORCID iD: 0000-0001-7853-932X
Show others and affiliations
2015 (English)In: Geoscientific Model Development, ISSN 1991-959X, E-ISSN 1991-9603, Vol. 8, no 9, p. 2777-2813Article in journal (Refereed) Published
Resource type
Text
Abstract [en]

This paper describes the pre-operational analysis and forecasting system developed during MACC (Monitoring Atmospheric Composition and Climate) and continued in the MACC-II (Monitoring Atmospheric Composition and Climate: Interim Implementation) European projects to provide air quality services for the European continent. This system is based on seven state-of-the art models developed and run in Europe (CHIMERE, EMEP, EURAD-IM, LOTOS-EUROS, MATCH, MOCAGE and SILAM). These models are used to calculate multi-model ensemble products. The paper gives an overall picture of its status at the end of MACCII (summer 2014) and analyses the performance of the multi-model ensemble. The MACC-II system provides daily 96 h forecasts with hourly outputs of 10 chemical species/aerosols (O-3, NO2, SO2, CO, PM10, PM2.5, NO, NH3, total NMVOCs (non-methane volatile organic compounds) and PAN + PAN precursors) over eight vertical levels from the surface to 5 km height. The hourly analysis at the surface is done a posteriori for the past day using a selection of representative air quality data from European monitoring stations. The performance of the system is assessed daily, weekly and every 3 months (seasonally) through statistical indicators calculated using the available representative air quality data from European monitoring stations. Results for a case study show the ability of the ensemble median to forecast regional ozone pollution events. The seasonal performances of the individual models and of the multi-model ensemble have been monitored since September 2009 for ozone, NO2 and PM10. The statistical indicators for ozone in summer 2014 show that the ensemble median gives on average the best performances compared to the seven models. There is very little degradation of the scores with the forecast day but there is a marked diurnal cycle, similarly to the individual models, that can be related partly to the prescribed diurnal variations of anthropogenic emissions in the models. During summer 2014, the diurnal ozone maximum is underestimated by the ensemble median by about 4 mu g m(-3) on average. Locally, during the studied ozone episodes, the maxima from the ensemble median are often lower than observations by 30-50 mu g m(-3). Overall, ozone scores are generally good with average values for the normalised indicators of 0.14 for the modified normalised mean bias and of 0.30 for the fractional gross error. Tests have also shown that the ensemble median is robust to reduction of ensemble size by one, that is, if predictions are unavailable from one model. Scores are also discussed for PM10 for winter 2013-1014. There is an underestimation of most models leading the ensemble median to a mean bias of 4.5 mu g m(-3). The ensemble median fractional gross error is larger for PM10 (similar to 0.52) than for ozone and the correlation is lower (similar to 0.35 for PM10 and similar to 0.54 for ozone). This is related to a larger spread of the seven model scores for PM10 than for ozone linked to different levels of complexity of aerosol representation in the individual models. In parallel, a scientific analysis of the results of the seven models and of the ensemble is also done over the Mediterranean area because of the specificity of its meteorology and emissions. The system is robust in terms of the production availability. Major efforts have been done in MACC-II towards the operationalisation of all its components. Foreseen developments and research for improving its performances are discussed in the conclusion.

Place, publisher, year, edition, pages
2015. Vol. 8, no 9, p. 2777-2813
National Category
Environmental Sciences
Research subject
Environment
Identifiers
URN: urn:nbn:se:smhi:diva-1943DOI: 10.5194/gmd-8-2777-2015ISI: 000364325700005OAI: oai:DiVA.org:smhi-1943DiVA, id: diva2:924776
Available from: 2016-04-29 Created: 2016-03-03 Last updated: 2017-11-30Bibliographically approved

Open Access in DiVA

fulltext(7678 kB)308 downloads
File information
File name FULLTEXT01.pdfFile size 7678 kBChecksum SHA-512
c5a053d8535f06801346e50f94c679e97771a4259395e9b043614093d7aef385fe6cb4f118172fb1208a03e96272b24ecc9d742c77e492b1cc69ce4144e419f9
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Authority records

Andersson, CamillaBergström, RobertRobertson, LennartThomas, Manu Anna

Search in DiVA

By author/editor
Andersson, CamillaBergström, RobertRobertson, LennartThomas, Manu Anna
By organisation
Air quality
In the same journal
Geoscientific Model Development
Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 308 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 299 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf