Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Advancements in decadal climate predictability: The role of nonoceanic drivers
Show others and affiliations
2015 (English)In: Reviews of geophysics, ISSN 8755-1209, E-ISSN 1944-9208, Vol. 53, no 2, p. 165-202Article in journal (Refereed) Published
Resource type
Text
Abstract [en]

We review recent progress in understanding the role of sea ice, land surface, stratosphere, and aerosols in decadal-scale predictability and discuss the perspectives for improving the predictive capabilities of current Earth system models (ESMs). These constituents have received relatively little attention because their contribution to the slow climatic manifold is controversial in comparison to that of the large heat capacity of the oceans. Furthermore, their initialization as well as their representation in state-of-the-art climate models remains a challenge. Numerous extraoceanic processes that could be active over the decadal range are proposed. Potential predictability associated with the aforementioned, poorly represented, and scarcely observed constituents of the climate system has been primarily inspected through numerical simulations performed under idealized experimental settings. The impact, however, on practical decadal predictions, conducted with realistically initialized full-fledged climate models, is still largely unexploited. Enhancing initial-value predictability through an improved model initialization appears to be a viable option for land surface, sea ice, and, marginally, the stratosphere. Similarly, capturing future aerosol emission storylines might lead to an improved representation of both global and regional short-term climatic changes. In addition to these factors, a key role on the overall predictive ability of ESMs is expected to be played by an accurate representation of processes associated with specific components of the climate system. These act as signal carriers, transferring across the climatic phase space the information associated with the initial state and boundary forcings, and dynamically bridging different (otherwise unconnected) subsystems. Through this mechanism, Earth system components trigger low-frequency variability modes, thus extending the predictability beyond the seasonal scale.

Place, publisher, year, edition, pages
2015. Vol. 53, no 2, p. 165-202
National Category
Climate Research
Research subject
Climate
Identifiers
URN: urn:nbn:se:smhi:diva-1965DOI: 10.1002/2014RG000473ISI: 000358322200001OAI: oai:DiVA.org:smhi-1965DiVA, id: diva2:923359
Available from: 2016-04-26 Created: 2016-03-03 Last updated: 2017-11-30Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Koenigk, Torben

Search in DiVA

By author/editor
Koenigk, Torben
By organisation
Climate research - Rossby Centre
In the same journal
Reviews of geophysics
Climate Research

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 431 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf