Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Vertical structure and physical processes of the Madden-Julian oscillation: Exploring key model physics in climate simulations
Show others and affiliations
2015 (English)In: Journal of Geophysical Research - Atmospheres, ISSN 2169-897X, E-ISSN 2169-8996, Vol. 120, no 10, 4718-4748 p.Article in journal (Refereed) Published
Resource type
Text
Abstract [en]

Aimed at reducing deficiencies in representing the Madden-Julian oscillation (MJO) in general circulation models (GCMs), a global model evaluation project on vertical structure and physical processes of the MJO was coordinated. In this paper, results from the climate simulation component of this project are reported. It is shown that the MJO remains a great challenge in these latest generation GCMs. The systematic eastward propagation of the MJO is only well simulated in about one fourth of the total participating models. The observed vertical westward tilt with altitude of the MJO is well simulated in good MJO models but not in the poor ones. Damped Kelvin wave responses to the east of convection in the lower troposphere could be responsible for the missing MJO preconditioning process in these poor MJO models. Several process-oriented diagnostics were conducted to discriminate key processes for realistic MJO simulations. While large-scale rainfall partition and low-level mean zonal winds over the Indo-Pacific in a model are not found to be closely associated with its MJO skill, two metrics, including the low-level relative humidity difference between high- and low-rain events and seasonal mean gross moist stability, exhibit statistically significant correlations with the MJO performance. It is further indicated that increased cloud-radiative feedback tends to be associated with reduced amplitude of intraseasonal variability, which is incompatible with the radiative instability theory previously proposed for the MJO. Results in this study confirm that inclusion of air-sea interaction can lead to significant improvement in simulating the MJO.

Place, publisher, year, edition, pages
2015. Vol. 120, no 10, 4718-4748 p.
National Category
Climate Research
Research subject
Climate
Identifiers
URN: urn:nbn:se:smhi:diva-1970DOI: 10.1002/2014JD022375ISI: 000356696800017OAI: oai:DiVA.org:smhi-1970DiVA: diva2:923345
Available from: 2016-04-26 Created: 2016-03-03 Last updated: 2016-04-26Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Klingaman, Nicholas P.DeMott, CharlotteWyser, Klaus
By organisation
Climate research - Rossby Centre
In the same journal
Journal of Geophysical Research - Atmospheres
Climate Research

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 22 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.26.0
|