Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The Clouds Climate Change Initiative: Assessment of state-of-the-art cloud property retrieval schemes applied to AVHRR heritage measurements
SMHI, Research Department, Atmospheric remote sensing.ORCID iD: 0000-0001-8256-0228
Show others and affiliations
2015 (English)In: Remote Sensing of Environment, ISSN 0034-4257, E-ISSN 1879-0704, Vol. 162, 363-379 p.Article in journal (Refereed) Published
Resource type
Text
Abstract [en]

Cloud property retrievals from 3 decades of the Advanced Very High Resolution Radiometer (AVHRR) measurements provide a unique opportunity for a long-term analysis of clouds. In this study, the accuracy of AVHRR-derived cloud properties cloud mask, cloud-top height, cloud phase and cloud liquid water path is assessed using three state-of-the-art retrieval schemes. In addition, the same retrieval schemes are applied to the AVHRR heritage channels of the Moderate Resolution Imaging Spectroradiometer (MODIS) to create AVHRR-like retrievals with higher spatial resolution and based on presumably more accurate spectral calibration. The cloud property retrievals were collocated and inter-compared with observations from CloudSat, CALIPSO and AMSR-E The resulting comparison exhibited good agreement in general. The schemes provide correct cloud detection in 82 to 90% of all cloudy cases. With correct identification of clear-sky in 61 to 85% of all clear areas, the schemes are slightly biased towards cloudy conditions. The evaluation of the cloud phase classification shows correct identification of liquid clouds in 61 to 97% and a correct identification of ice clouds in 68 to 95%, demonstrating a large variability among the schemes. Cloud-top height (CTH) retrievals were of relatively similar quality with standard deviations ranging from 2.1 km to 2.7 km. Significant negative biases in these retrievals are found in particular for cirrus clouds. The biases decrease if optical depth thresholds are applied to determine the reference CTH measure. Cloud liquid water path (LWP) is also retrieved well with relative low standard deviations (20 to 28 g/m(2)), negative bias and high correlations. Cloud ice water path (IWP) retrievals of AVHRR and MODIS exhibit a relative high uncertainty with standard deviations between 800 and 1400 g/m2, which in relative terms exceed 100% when normalized with the mean IWP. However, the global histogram distributions of IWP were similar to the reference dataset MODIS retrievals are for most comparisons of slightly better quality than AVHRR-based retrievals. Additionally, the choice of different near-infrared channels, 3.7 mu M as opposed to 1.6 mu m, can have a significant impact on the retrieval quality, most pronounced for IWP, with better accuracy for the 1.6 mu m channel setup. This study presents a novel assessment of the quality of cloud properties derived from AVHRR channels, which quantifies the accuracy of the considered retrievals based on common approaches and validation data. Furthermore, it assesses the capabilities of AVHRR-like spectral information for retrieving cloud properties in the light of generating climate data records of cloud properties from three decades of AVHRR measurements. (C) 2013 Elsevier Inc. All rights reserved.

Place, publisher, year, edition, pages
2015. Vol. 162, 363-379 p.
National Category
Meteorology and Atmospheric Sciences
Research subject
Remote sensing
Identifiers
URN: urn:nbn:se:smhi:diva-1982DOI: 10.1016/j.rse.2013.10.035ISI: 000355052000025OAI: oai:DiVA.org:smhi-1982DiVA: diva2:923280
Available from: 2016-04-26 Created: 2016-03-03 Last updated: 2016-04-26Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Karlsson, Karl-GöranScheirer, Ronald
By organisation
Atmospheric remote sensing
In the same journal
Remote Sensing of Environment
Meteorology and Atmospheric Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 15 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.26.0
|