Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Spherical and spheroidal model particles as an error source in aerosol climate forcing and radiance computations: A case study for feldspar aerosols
SMHI, Research Department, Air quality.ORCID iD: 0000-0001-5695-1356
2005 (English)In: Journal of Geophysical Research - Atmospheres, ISSN 2169-897X, E-ISSN 2169-8996, Vol. 110, no D18, D18S13Article in journal (Refereed) Published
Abstract [en]

A case study for feldspar aerosols is conducted to assess the errors introduced by simple model particles in radiance and flux simulations. The spectral radiance field and net flux are computed for a realistic phase function of feldspar aerosols measured in the laboratory at 633 nm. Results are compared to computations with spherical and spheroidal model particles. It is found that the use of spherical model particles introduces large spectral radiance errors at top of atmosphere (TOA) between -6 and 31%. Using a new shape parameterization of spheroids reduces the error range to -1 to 6%. Spherical model particles yield an absolute TOA spectral net flux error of -6.1 mW m(-2) nm(-1). An equiprobable shape distribution of spheroids results in only minor improvements, but the new shape parameterization yields an error of only -0.8 mW m(-2) nm(-1). A variation of the refractive index m reveals that the resulting changes in the TOA spectral net flux are slightly smaller than the error caused by assuming the particles to be spherical. However, the uncertainty of m is commonly considered the major error source in aerosol radiative forcing simulations, whereas the use of spherical model particles is often not seriously questioned. This study implies that this notion needs to be reconsidered. Should the relative spectral net flux errors be representative for the entire spectrum, then the use of spherical model particles may be among the major error sources in broadband flux simulations. The new spheroidal shape parameterization can, however, substantially improve the results.

Place, publisher, year, edition, pages
2005. Vol. 110, no D18, D18S13
National Category
Environmental Sciences
Research subject
Environment
Identifiers
URN: urn:nbn:se:smhi:diva-1276DOI: 10.1029/2004JD005558ISI: 000228898300001OAI: oai:DiVA.org:smhi-1276DiVA: diva2:819761
Available from: 2015-06-11 Created: 2015-05-26 Last updated: 2015-06-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Kahnert, Michael
By organisation
Air quality
In the same journal
Journal of Geophysical Research - Atmospheres
Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 7 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.28.0
|