Eight regional Eulerian chemical transport models (CTMs) are compared with each other and with an extensive set of observations including ground-level concentrations from EANET, ozone soundings from JMA and vertical profiles from the TRACE-P experiment to evaluate the models' abilities in simulating O(3) and relevant species (SO(2), NO, NO(2), HNO(3) and PAN) in the troposphere of East Asia and to look for similarities and differences among model performances. Statistical analysis is conducted to help estimate the consistency and discrepancy between model simulation and observation in terms of various species, seasons, locations, as well as attitude ranges. In general, all models show a good skill of simulating SO(2) for both ground level and the lower troposphere, although two of the eight models systematically overpredict SO(2) concentration. The model skills for O(3) vary largely with region and season. For ground-level O(3), model results are best correlated with observations in July 2001. Comparing with O(3) soundings measured in the afternoon reveals the best consistency among models in March 2001 and the largest disparity in O(3) magnitude in July 2001, although most models produce the best correlation in July as well. In terms of the statistics for the four flights of TRACE-P experiment, most models appear to be able to accurately capture the variability in the lower troposphere. The model performances for NO(x) are relatively poor, with lower correlation and with almost all models tending to underpredict NO(x) levels, due to larger uncertainties in either emission estimates or complex chemical mechanism represented. All models exhibit larger RMSE at altitudes < 2 km than 2-5.5 kin, mainly due to a consistent tendency of these models towards underprediction of the magnitude of intense plumes that often originate from near surface. Relatively lower correlation at altitudes 2-5.5 km may be attributed to the models' limitation in representing convection or potential chemical processes. Most of the key features in species distribution have been consistently reproduced by the participating models, such as the O(3) enhancement in the western Pacific Ocean in March and in northeast Asia in July, respectively, although the absolute model values may differ considerably from each other. Large differences are found among models in the southern parts of the domain for all the four periods, including southern China and northern parts of some Southeast Asia countries where the behaviors of chemical components and the ability of these models are still not clearly known because of a lack of observational databases. (C) 2007 Elsevier Ltd. All rights reserved.