Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Impact of climate change and development scenarios on flow patterns in the Okavango River
SMHI, Core Services.ORCID iD: 0000-0001-7490-7949
Show others and affiliations
2006 (English)In: Journal of Hydrology, ISSN 0022-1694, E-ISSN 1879-2707, Vol. 331, no 1-2, p. 43-57Article in journal (Refereed) Published
Abstract [en]

This paper lays the foundation for the use of scenario modelling as a tool for integrated water resource management in the Okavango River basin. The Pitman hydrological model is used to assess the impact of various development and climate change scenarios on downstream river flow. The simulated impact on modelled river discharge of increased water use for domestic use, livestock, and informal irrigation (proportional to expected population increase) is very limited. Implementation of all likely potential formal irrigation schemes mentioned in available reports is expected to decrease the annual flow by 2% and the minimum monthly flow by 5%. The maximum possible impact of irrigation on annual average flow is estimated as 8%, with a reduction of minimum monthly flow by 17%. Deforestation of all areas within a 1 km buffer around the rivers is estimated to increase the flow by 6%. However, construction of all potential hydropower reservoirs in the basin may change the monthly mean flow distribution dramatically, although under the assumed operational rules, the impact of the dams is only substantial during wet years. The simulated impacts of climate change are considerable larger that those of the development scenarios (with exception of the high development scenario of hydropower schemes) although the results are sensitive to the choice of GCM and the IPCC SRES greenhouse gas (GHG) emission scenarios. The annual mean water flow predictions for the period 2020-2050 averaged over scenarios from all the four GCMs used in this study are close to the present situation for both the A2 and B2 GHG scenarios. For the 2050-2080 and 2070-2099 periods the all-GCM mean shows a flow decrease of 20% (14%) and 26% (17%), respectively, for the A2 (B2) GHG scenarios. However, the uncertainty in the magnitude of simulated future changes remains high. The simulated effect of climate change on minimum monthly flow is proportionally higher than the impact on the annual mean flow. (c) 2006 Elsevier B.V. All rights reserved.

Place, publisher, year, edition, pages
2006. Vol. 331, no 1-2, p. 43-57
Keywords [en]
river basin, hydrological modelling, scenarios, climate change, water resources development, Okavango
National Category
Oceanography, Hydrology and Water Resources
Research subject
Hydrology; Climate
Identifiers
URN: urn:nbn:se:smhi:diva-781DOI: 10.1016/j.jhydrol.2006.04.039ISI: 000242329500005OAI: oai:DiVA.org:smhi-781DiVA, id: diva2:807227
Available from: 2015-04-23 Created: 2015-04-22 Last updated: 2020-05-28Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Andersson, Lotta

Search in DiVA

By author/editor
Andersson, Lotta
By organisation
Core Services
In the same journal
Journal of Hydrology
Oceanography, Hydrology and Water Resources

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 342 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf