Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Can particle shape information be retrieved from light-scattering observations using spheroidal model particles?
SMHI, Research Department, Air quality.ORCID iD: 0000-0001-5695-1356
2011 (English)In: Journal of Quantitative Spectroscopy and Radiative Transfer, ISSN 0022-4073, E-ISSN 1879-1352, Vol. 112, no 13, 2213-2225 p.Article in journal (Refereed) Published
Abstract [en]

We address the question if and how observations of scattered intensity and polarisation can be employed for retrieving particle shape information beyond a simple classification into spherical and nonspherical particles. To this end, we perform several numerical experiments, in which we attempt to retrieve shape information of complex particles with a simple nonspherical particle model based on homogeneous spheroids. The discrete dipole approximation is used to compute reference phase matrices for a cube, a Gaussian random sphere, and a porous oblate and prolate spheroid as a function of size parameter. Phase matrices for the model particles, homogeneous spheroids, are computed with the T-matrix method. By assuming that the refractive index and the size distribution is known, an optimal shape distribution of model particles is sought that best matches the reference phase matrix. Both the goodness of fit and the optimal shape distribution are analysed. It is found that the phase matrices of cubes and Gaussian random spheres are well reproduced by the spheroidal particle model, while the porous spheroids prove to be challenging. The "retrieved" shape distributions, however, do not correlate well with the shape of the target particle even when the phase matrix is closely reproduced. Rather, they tend to exaggerate the aspect ratio and always include multiple spheroids. A most likely explanation why spheroids succeed in mimicking phase matrices of more irregularly shaped particles, even if their shape distributions display little similarity to those of the target particles, is that by varying the spheroids' aspect ratio one covers a large range of different phase matrices. This often makes it possible to find a shape distribution of spheroids that matches the phase matrix of more complex particles. (C) 2011 Elsevier Ltd. All rights reserved.

Place, publisher, year, edition, pages
2011. Vol. 112, no 13, 2213-2225 p.
Keyword [en]
Light scattering, Inverse modelling, Spheroids, Shape distributions, Irregular shapes, Aerosols, Cosmic dust, Mineral dust, Volcanic dust
National Category
Meteorology and Atmospheric Sciences
Research subject
Environment
Identifiers
URN: urn:nbn:se:smhi:diva-510DOI: 10.1016/j.jqsrt.2011.05.008ISI: 000294518300015OAI: oai:DiVA.org:smhi-510DiVA: diva2:806058
Available from: 2015-04-17 Created: 2015-04-15 Last updated: 2015-04-17Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Kahnert, Michael
By organisation
Air quality
In the same journal
Journal of Quantitative Spectroscopy and Radiative Transfer
Meteorology and Atmospheric Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 12 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.28.0
|