Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Applying spaceborne reflectivity measurements for calculation of the solar ultraviolet radiation at ground level
Show others and affiliations
2012 (English)In: ATMOSPHERIC MEASUREMENT TECHNIQUES, ISSN 1867-1381, Vol. 5, no 12, p. 3041-3054Article in journal (Refereed) Published
Abstract [en]

Long-term analysis of cloud effects on ultraviolet (UV) radiation on the ground using spaceborne observations requires the use of instruments that have operated consecutively. The longest data record can be built from the reflectivity measurements produced by the instruments Total Ozone Mapping Spectrometers (TOMS) flown on Nimbus 7 from 1979 to 1992, TOMS on Earth Probe from 1996 to 2005, and the Ozone Monitoring Instrument (OMI) flown on EOS Aura since 2004. The reflectivity data produced by TOMS on Earth Probe is only included until 2002. A comparison is made with cloud effects inferred from ground-based pyranometer measurements at over 83 World Radiation Data Centre stations. Modelled UV irradiances utilizing the standard reflectivity are compared with measurements of UV irradiances at eight European low-elevation stations. The reflectivity data of the two TOMS instruments shows a consistent agreement, and the required corrections are of low percentage, i.e. 2-3%. In contrast, the reflectivity product of OMI requires correction of 7-10%, and a solar angle dependency therein is more pronounced. These corrections were inferred from a comparison with pyranometer data, and tested using the UV measurements. The average reduction of UV radiation due to clouds for all sites together indicates a small trend: a diminishing cloudiness, in line with ground-based UV observations. Uncorrected implementation of the reflectivity data would have indicated the opposite. An optimal area was established for reflectivity data for the calculation of daily sums of UV radiation. It measures approximately 1.25 degrees in latitudinal direction for square-shaped areas overhead the ground-based UV stations. Such an area can be traversed within 5 to 7 h at the average wind speeds found for the West European continent.

Place, publisher, year, edition, pages
2012. Vol. 5, no 12, p. 3041-3054
National Category
Meteorology and Atmospheric Sciences
Research subject
Remote sensing
Identifiers
URN: urn:nbn:se:smhi:diva-469DOI: 10.5194/amt-5-3041-2012ISI: 000312666200005OAI: oai:DiVA.org:smhi-469DiVA, id: diva2:805964
Available from: 2015-04-17 Created: 2015-04-14 Last updated: 2017-05-04Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Josefsson, Weine

Search in DiVA

By author/editor
Josefsson, Weine
By organisation
Core Services
Meteorology and Atmospheric Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 121 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf