Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Impact of dust particle non-sphericity on climate simulations
SMHI, Research Department, Air quality.ORCID iD: 0000-0001-5695-1356
Show others and affiliations
2013 (English)In: Quarterly Journal of the Royal Meteorological Society, ISSN 0035-9009, E-ISSN 1477-870X, Vol. 139, no 677, p. 2222-2232Article in journal (Refereed) Published
Abstract [en]

Although mineral aerosol (dust) particles are irregular in shape, they are treated as homogeneous spheres in climate model radiative transfer calculations. Here, we test the effect of dust particle non-sphericity in the ECHAM5.5-HAM2 global aerosol-climate model. The short-wave optical properties of the two insoluble dust modes in HAM2 are modelled using an ensemble of spheroids that has been optimized to reproduce the optical properties of dust-like aerosols, thereby providing a significant improvement over spheres. First, the direct radiative effects (DRE) of dust non-sphericity were evaluated diagnostically, by comparing spheroids with both volume-equivalent and volume-to-area (V/A) equivalent spheres. In the volume-equivalent case, the short-wave DRE of insoluble dust at the surface and at the top of the atmosphere (TOA) was slightly smaller (typically by 3-4%) for spheroidal than for spherical dust particles. This rather small difference stems from compensating non-sphericity effects on the dust optical thickness and asymmetry parameter. In the V/A-equivalent case, the difference in optical thickness was virtually eliminated and the DRE at the TOA (surface) was approximate to 20% (approximate to 13%) smaller for spheroids than for spheres, due to a larger asymmetry parameter. Even then, however, the global-mean DRE of non-sphericity was only 0.055 W m(-2) at the TOA and 0.070 W m(-2) at the surface. Subsequently, the effects of dust non-sphericity were tested interactively in simulations in which ECHAM5.5-HAM2 was coupled to a mixed-layer ocean model. Consistent with the rather small radiative effects noted above, the climatic differences from simulations with spherical dust optics were generally negligible.

Place, publisher, year, edition, pages
2013. Vol. 139, no 677, p. 2222-2232
Keywords [en]
aerosols, radiative transfer, climate modelling, dust particles, non-sphericity
National Category
Meteorology and Atmospheric Sciences
Research subject
Environment
Identifiers
URN: urn:nbn:se:smhi:diva-345DOI: 10.1002/qj.2084ISI: 000328348000020OAI: oai:DiVA.org:smhi-345DiVA, id: diva2:805110
Available from: 2015-04-14 Created: 2015-03-31 Last updated: 2017-12-04Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Kahnert, Michael

Search in DiVA

By author/editor
Kahnert, Michael
By organisation
Air quality
In the same journal
Quarterly Journal of the Royal Meteorological Society
Meteorology and Atmospheric Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 50 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf