Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Patterns and drivers of riverine nitrogen (N) across alpine, subarctic, and boreal Sweden
SMHI, Research Department, Hydrology.ORCID iD: 0000-0002-6088-6646
2014 (English)In: Biogeochemistry, ISSN 0168-2563, E-ISSN 1573-515X, Vol. 120, no 1-3, 105-120 p.Article in journal (Refereed) Published
Abstract [en]

Concentrations of nitrogen (N) in surface waters reflect the export of different organic and inorganic forms from terrestrial environments and the modification of these resources within aquatic habitats. We evaluated the relative influence of terrestrial ecosystem state factors, anthropogenic gradients, and aquatic habitat variables on patterns of N concentration in streams and rivers across Sweden. We analyzed data from 115 national monitoring stations distributed along a 1,300 km latitudinal gradient, draining catchments that differed by more than 10 A degrees C in mean annual temperature (MAT), and more than five orders of magnitude in area. Regional trends in total organic nitrogen (TON) and carbon:nitrogen (C:N) were closely linked to broad-scale gradients in state factors (e.g., MAT), reflecting the importance of long-term ecosystem development on terrestrial organic matter accrual and export. In contrast, trends in nitrate (NO3 (-)), the dominant form of inorganic N, were largely unrelated to state factors, but instead were closely connected to gradients related to anthropogenic inputs (e.g., agricultural cover). Despite large differences in drainage size and cover by lakes and wetlands among sites, these descriptors of the aquatic environment had little influence on spatial patterns of N chemistry. The temporal variability in N concentrations also differed between forms: inorganic N was strongly seasonal, with peaks during dormant periods that underscore biotic control over terrestrial losses of limiting resources. Organic N showed comparatively weaker seasonality, but summertime increases suggest temperature-driven patterns of soil TON production and export-temporal signals which were modified by variables that govern water residence time within catchments. Unique combinations of regional predictors reflect basic differences in the cycling of organic versus inorganic N and highlight variation in the sensitivity of these different N forms to environmental changes that directly alter inputs of resources, or indirectly modify terrestrial ecosystems through shifts in species composition, rates of forest productivity, soil development, and hydrologic routing.

Place, publisher, year, edition, pages
2014. Vol. 120, no 1-3, 105-120 p.
Keyword [en]
Watershed, Catchment, Streams, Rivers, Organic nitrogen, Inorganic nitrogen
National Category
Oceanography, Hydrology, Water Resources
Research subject
Hydrology
Identifiers
URN: urn:nbn:se:smhi:diva-109DOI: 10.1007/s10533-014-9984-zISI: 000339871700007OAI: oai:DiVA.org:smhi-109DiVA: diva2:804922
Available from: 2015-04-14 Created: 2015-03-26 Last updated: 2015-04-14Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Temnerud, Johan
By organisation
Hydrology
In the same journal
Biogeochemistry
Oceanography, Hydrology, Water Resources

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 16 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.26.0
|