Using air quality measurements, we categorized air pollution according to source sectors in a rural background environment in southern Sweden based on hourly air-mass backward trajectories during 1997-2010. Concentrations of fine (PM2.5) and sum of fine and coarse particulate matter (PM10), accumulation mode particle number, black carbon and surface ozone were 4.0, 3.9, 4.5, 6.8 and 1.3 times higher, respectively, in air masses from the southeast as compared with those in air masses from the cleanest sector in the northwest, consistent with air-mass transport over areas with relatively high emissions of primary particulate matter (PM) and secondary PM precursors. The highest ultrafine particle numbers were associated with clean air from the northwest. We estimate that almost 7.8% and 0.6% higher premature human mortality is caused by PM2.5 and ozone exposure, respectively, when air originates from the southeast as compared with that when air originates from the northwest. Reductions of emissions in eastern Europe would reduce the highest air pollution concentrations and associated health risks. However, since air masses from the southwest are more frequent, emissions in the western part of Europe are more important for annual mean premature mortality.