Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Evaluation of the atmospheric water vapor content in a regional climate model using ground-based GPS measurements
SMHI, Research Department, Climate research - Rossby Centre.
2013 (English)In: Journal of Geophysical Research - Atmospheres, ISSN 2169-897X, E-ISSN 2169-8996, Vol. 118, no 2, p. 329-339Article in journal (Refereed) Published
Abstract [en]

Ground-based GPS measurements can provide independent data for the assessment of climate models. We use the atmospheric integrated water vapor (IWV) obtained from GPS measurements at 99 European sites to evaluate the regional Rossby Centre Atmospheric climate model (RCA) driven at the boundaries by the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis data (ERA Interim). The GPS data were compared to the RCA simulation and the ERA Interim data. The comparison was first made using the monthly mean values. Averaged over the domain and the 14 years covered by the GPS data, IWV differences of about 0.47 kg/m(2) and 0.39 kg/m(2) are obtained for RCA-GPS and ECMWF-GPS, respectively. The RCA-GPS standard deviation is 0.98 kg/m(2) whereas it is 0.35 kg/m(2) for the ECMWF-GPS comparison. The IWV differences for RCA are positively correlated to the differences for ECMWF. However, this is not the case for two sites in Italy where a wet bias is seen for ECMWF, while a dry bias is seen for RCA, the latter being consistent with a cold temperature bias found for RCA in that region by other authors. Comparisons of the estimated diurnal cycle and the spatial structure function of the IWV were made between the GPS data and the RCA simulation. The RCA captures the geographical variation of the diurnal peak in the summer. Averaged over all sites, a peak at 17 local solar time is obtained from the GPS data while it appears later, at 18, in the RCA simulation. The spatial variation of the IWV obtained for an RCA run with a resolution of 11 km gives a better agreement with the GPS results than does the spatial variation from a 50 km resolution run. Citation: Ning, T., G. Elgered, U. Willen, and J. M. Johansson (2013), Evaluation of the atmospheric water vapor content in a regional climate model using ground-based GPS measurements, J. Geophys. Res. Atmos., 118, 329-339, doi: 10.1029/2012JD018053.

Place, publisher, year, edition, pages
2013. Vol. 118, no 2, p. 329-339
National Category
Climate Research
Research subject
Climate
Identifiers
URN: urn:nbn:se:smhi:diva-392DOI: 10.1029/2012JD018053ISI: 000317838100007OAI: oai:DiVA.org:smhi-392DiVA, id: diva2:800212
Available from: 2015-04-02 Created: 2015-03-31 Last updated: 2017-12-04Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Willén, Ulrika

Search in DiVA

By author/editor
Willén, Ulrika
By organisation
Climate research - Rossby Centre
In the same journal
Journal of Geophysical Research - Atmospheres
Climate Research

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 186 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf