Underpinning all hydrological simulations is an estimate of the catchment area upstream of a point of interest. Locally, the delineation of a catchment and estimation of its area is usually done using fine scale maps and local knowledge, but for large-scale hydrological modelling, particularly continental and global scale modelling, this level of detailed data analysis is not practical. For large-scale hydrological modelling, remotely sensed and hydrologically conditioned river routing networks, such as HYDROlk and HydroSHEDS, are often used. This study evaluates the accuracy of the accumulated upstream area in each gridpoint given by the networks. This is useful for evaluating the ability of these data sets to delineate catchments of varying scale for use in hydrological models. It is shown that the higher resolution HydroSHEDS data set gives better results than the HYDROlk data set and that accuracy decreases with decreasing basin scale. In ungauged basins, or where other local catchment area data are not available, the validation made in this study can be used to indicate the likelihood of correctly delineating catchments of different scales using these river routing networks.