Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Precipitation Analysis from AMSU (Nowcasting SAF)
SMHI.
SMHI, Forskningsavdelningen, Atmosfärisk fjärranalys.ORCID-id: 0000-0003-2138-4325
SMHI, Samhälle och säkerhet.ORCID-id: 0000-0003-0960-1622
SMHI, Forskningsavdelningen, Atmosfärisk fjärranalys.
1999 (engelsk)Rapport (Annet vitenskapelig)
Abstract [en]

We describe a method to remotely sense precipitation and classify its intensity over water, coast, and land surfaces. This method is intended to be used in a nowcasting environment. It is based on data obtained from the Advanced Microwave Sounding Unit (AMSU) onboard NOAA-15. Each observation is assigned a probability to belong to four different classes namely precipitation- free, risk of precipitation, precipitation between 0.5 and 5 mm/h and precipitation higher than 5 mm/h. Since the method is designed to work over different surface types, it mainly relies on the scatteringsignal of precipitation-sized ice particles received at high frequencies.

For the calibration and validation of the method we use an eight month dataset of combined radar and AMSU-data obtained over the Baltic area. We campare results for the AMSU-B channels at 89 GHz and 150 GHz and find that the high frequency channel at 150 GHz allows for a much better discrimination of different types of precipitation than the 89 GHz channel. While precipitation-free areas as well as heavily precipitating areas (> 5mm/h) can be identified to a high accuracy, the intennediate classes are more ambiguous. This ambiguity stems from the ambiguity of the passive microwave observations as well as from the non-perfect matching of the different data sources and non-perfect radar adjustment. In addition to a statistical assessment of the method's accuracy, we present case studies to demonstrate its capabilities to classify different types of precipitation and to seemlessly work over highly structured, inhomogeneous surfaces.

sted, utgiver, år, opplag, sider
SMHI , 1999.
Serie
Meteorologi, ISSN 0283-7730 ; 93
HSV kategori
Forskningsprogram
Meteorologi
Identifikatorer
URN: urn:nbn:se:smhi:diva-2360Lokal ID: Meteorologi, Rapporter, Serie MeteorologiOAI: oai:DiVA.org:smhi-2360DiVA, id: diva2:947653
Tilgjengelig fra: 1999-05-13 Laget: 2016-07-08 Sist oppdatert: 2020-05-04bibliografisk kontrollert

Open Access i DiVA

fulltext(1991 kB)1 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1991 kBChecksum SHA-512
15f6a214f1fcfe0bd52f407258d8a70cb6d4ca4778bf990898ea1798f804a061bd4211c7a5bbb38b61faa005a641b30b39221deceaeb02af2c8e41f1d6b43894
Type fulltextMimetype application/pdf

Personposter BETA

Thoss, AnkeDybbroe, AdamMichelson, Daniel

Søk i DiVA

Av forfatter/redaktør
Thoss, AnkeDybbroe, AdamMichelson, Daniel
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 1 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 61 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf