Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Methodologies to characterize uncertainties in regional reanalyses
SMHI, Forskningsavdelningen, Meteorologi.
2015 (engelsk)Inngår i: Advances in Science and Research, ISSN 1992-0628, E-ISSN 1992-0636, Vol. 12, s. 207-218Artikkel i tidsskrift (Fagfellevurdert) Published
Resurstyp
Text
Abstract [en]

When using climate data for various applications, users are confronted with the difficulty to assess the uncertainties of the data. For both in-situ and remote sensing data the issues of representativeness, homogeneity, and coverage have to be considered for the past, and their respective change over time has to be considered for any interpretation of trends. A synthesis of observations can be obtained by employing data assimilation with numerical weather prediction (NWP) models resulting in a meteorological reanalysis. Global reanalyses can be used as boundary conditions for regional reanalyses (RRAs), which run in a limited area (Europe in our case) with higher spatial and temporal resolution, and allow for assimilation of more regionally representative observations. With the spatially highly resolved RRAs, which exhibit smaller scale information, a more realistic representation of extreme events (e.g. of precipitation) compared to global reanalyses is aimed for. In this study, we discuss different methods for quantifying the uncertainty of the RRAs to answer the question to which extent the smaller scale information (or resulting statistics) provided by the RRAs can be relied on. Within the European Union's seventh Framework Programme (EU FP7) project Uncertainties in Ensembles of Regional Re-Analyses (UERRA) ensembles of RRAs (both multi-model and single model ensembles) are produced and their uncertainties are quantified. Here we explore the following methods for characterizing the uncertainties of the RRAs: (A) analyzing the feedback statistics of the assimilation systems, (B) validation against station measurements and (C) grids derived thereof, and (D) against gridded satellite data products. The RRA ensembles (E) provide the opportunity to derive ensemble scores like ensemble spread and other special probabilistic skill scores. Finally, user applications (F) are considered. The various methods are related to user questions they can help to answer.

sted, utgiver, år, opplag, sider
2015. Vol. 12, s. 207-218
HSV kategori
Forskningsprogram
Meteorologi
Identifikatorer
URN: urn:nbn:se:smhi:diva-2033DOI: 10.5194/asr-12-207-2015ISI: 000371692500027OAI: oai:DiVA.org:smhi-2033DiVA, id: diva2:925711
Konferanse
14th Annual Meeting of the European-Meteorological-Society (EMS) / 10th European Conference on Applications of Meteorology (ECAC), OCT 06-10, 2014, Prague, CZECH REPUBLIC
Tilgjengelig fra: 2016-05-03 Laget: 2016-05-02 Sist oppdatert: 2017-11-30bibliografisk kontrollert

Open Access i DiVA

fulltext(127 kB)148 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 127 kBChecksum SHA-512
4fbef4249331be8bc1567f94fee5b3c99098ca7e7de01785762444784773f4223f7dd5c2bcd47f4f37661c4f9543e687f647849f51b63d2a2bf66cd66934aa42
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekst

Personposter BETA

Undén, Per

Søk i DiVA

Av forfatter/redaktør
Undén, Per
Av organisasjonen
I samme tidsskrift
Advances in Science and Research

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 148 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 230 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf