Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
VAD winds from C band Ericsson Doppler Weather Radars
SMHI, Research Department.
1998 (English)In: Meteorologische Zeitschrift, ISSN 0941-2948, E-ISSN 1610-1227, Vol. 7, no 6, p. 309-319Article in journal (Refereed) Published
Abstract [en]

The VAD (Velocity Azimuth Display) technique for retrieving winds from a single Doppler weather radar is well known as a robust and simple one, though still not used on its merits. Precipitation generally gives VAD winds, but it is less known that even in high latitudes during the warmer seasons the Doppler weather radars of today record enough clear air echos to give wind profiles in the planetary boundary layer. There are, however, few verifications of VAD winds in general, and hardly any concerning clear air. In this paper mainly VAD winds from one Ericsson Doppler Weather Radar in Jonsered, Gothenburg (57.723 degrees N, 12.172 degrees E, 164 m above MSL) are compared to Radiosonde Winds (RAWINDs) from Landwetter (57.668 degrees N, 12.296 degrees E, 155 m above MSL). The sites are about 10 km apart, and the radiosonde is within the range used for the VAD (30 km). The VAD soundings were made each hour, and the radiosoundings every 6th (00, 06, 12 and 18 UTC). About seven months of data were available (9 Dec. 1994 to 14 Feb. 1995 and 28 Jun. to 30 Nov. 1995). The LORAN C system was used to retrieve the RAWINDs during the first period (Dec. 1994 to Feb. 1995), and the OMEGA system was used during the second period. The comparisons are made using the five standard pressure levels, 925, 850, 700, 500 and 400 hPa, corresponding to heights above MSL of about 750, 1450, 3000, 5600 and 7200 m. As overall results, the average differences, in m/s, between the VAD and RAWIND were largest at the lowest (geometrically) levels, and higher up more or less constant with height. This is remarkable, since the wind speed increases with height, and the relative differences thus decrease with height. As an example, the average of the magnitude of the wind vector differences was 3.2 m/s at 925 hPa, but about 2.8 m/s at the higher levels. The differences also tend to be somewhat larger for winds retrieved from clear air echos. In the planetary boundary layer during summer, that is up to about 800 hPa, the availability of VAD winds was about 90 %. The availability decreases with height, and at 400 hPa it was 15 % for the whole period. Comparisons are also performed between VAD winds and winds from a limited area model, HIRLAM.

Place, publisher, year, edition, pages
1998. Vol. 7, no 6, p. 309-319
National Category
Meteorology and Atmospheric Sciences
Research subject
Meteorology
Identifiers
URN: urn:nbn:se:smhi:diva-1560ISI: 000078475000004OAI: oai:DiVA.org:smhi-1560DiVA, id: diva2:850702
Available from: 2015-09-02 Created: 2015-08-31 Last updated: 2017-12-04Bibliographically approved

Open Access in DiVA

No full text in DiVA

By organisation
Research Department
In the same journal
Meteorologische Zeitschrift
Meteorology and Atmospheric Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 198 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf