Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Comparison of algorithms for classifying Swedish landcover using Landsat TM and ERS-1 SAR data
SMHI, Samhälle och säkerhet.
2000 (engelsk)Inngår i: Remote Sensing of Environment, ISSN 0034-4257, E-ISSN 1879-0704, Vol. 71, nr 1, s. 1-15Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Sixteen landcover classes in a representative Swedish environment were analyzed and classified using one Landsat TM scene and seven ERS-1 SARPRI images acquired during 1993. Spectral and backscattering signature separabilities are analyzed using the Jeffries-Matusita distance measure to determine which combinations of channels/images contained the most information. Maximum likelihood, sequential maximum a posteriori (SMAP, a Bayesian image segmentation algorithm), and back propagation neural network classification algorithms were applied and their performances evaluated. Results of the separability analyses indicated that the multitemporal SAR data contained more separable landcover information than did the multispectral TM data; the highest separabilities were achieved when the TM and SAR data were combined. Classification accuracy evaluation results indicate that the SMAP algorithm out-performed the maximum likelihood algorithm which, in turn, outperformed the neural network algorithm. The best KAPPA values, using combined data, were 0.495 for SMAP, 0.0445 for maximum likelihood, and 0.432 for neural network. Corresponding overall accuracy values were 57.1%, 52.4%, and 51.2%, respectively. A comparison between lumped crop area statistics with areal sums calculated from the classified satellite data gave the highest correspondence where the SMAP algorithm was used, followed by the maximum likelihood and neural network algorithms. Based on our application, we can therefore confirm the value of a multisource optical/SAR approach for analyzing landcover and the improvements to classification achieved using the SMAP algorithm. (C)Elsevier Science Inc., 2000.

sted, utgiver, år, opplag, sider
2000. Vol. 71, nr 1, s. 1-15
HSV kategori
Forskningsprogram
Meteorologi
Identifikatorer
URN: urn:nbn:se:smhi:diva-1525DOI: 10.1016/S0034-4257(99)00024-3ISI: 000084570200001OAI: oai:DiVA.org:smhi-1525DiVA, id: diva2:846770
Tilgjengelig fra: 2015-08-18 Laget: 2015-08-17 Sist oppdatert: 2017-12-04bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Michelson, Daniel

Søk i DiVA

Av forfatter/redaktør
Michelson, Daniel
Av organisasjonen
I samme tidsskrift
Remote Sensing of Environment

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 17 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.9
|