Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Using and Designing GCM-RCM Ensemble Regional Climate Projections
SMHI, Forskningsavdelningen, Klimatforskning - Rossby Centre.ORCID-id: 0000-0002-6495-1038
2010 (engelsk)Inngår i: Journal of Climate, ISSN 0894-8755, E-ISSN 1520-0442, Vol. 23, nr 24, s. 6485-6503Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Multimodel ensembles, whereby different global climate models (GCMs) and regional climate models (RCMs) are combined, have been widely used to explore uncertainties in regional climate projections. In this study, the extent to which information can be enhanced from sparsely filled GCM RCM ensemble matrices and the way in which simulations should be prioritized to sample uncertainties most effectively are examined. A simple scaling technique, whereby the local climate response in an RCM is predicted from the large-scale change in the GCM, is found to often show skill in estimating local changes for missing GCM RCM combinations. In particular, scaling shows skill for precipitation indices (including mean, variance, and extremes) across Europe in winter and mean and extreme temperature in summer and winter, except for hot extremes over central/northern Europe in summer. However, internal variability significantly impacts the ability to determine scaling skill for precipitation indices, with a three-member ensemble found to be insufficient for identifying robust local scaling relationships in many cases. This study suggests that, given limited computer resources, ensembles should be designed to prioritize the sampling of GCM uncertainty, using a reduced set of RCMs. Exceptions are found over the Alps and northeastern Europe in winter and central Europe in summer, where sampling multiple RCMs may be equally or more important for capturing uncertainty in local temperature or precipitation change. This reflects the significant role of local processes in these regions. Also, to determine the ensemble strategy in some cases, notably precipitation extremes in summer, better sampling of internal variability is needed.

sted, utgiver, år, opplag, sider
2010. Vol. 23, nr 24, s. 6485-6503
HSV kategori
Forskningsprogram
Klimat
Identifikatorer
URN: urn:nbn:se:smhi:diva-549DOI: 10.1175/2010JCLI3502.1ISI: 000286553500003OAI: oai:DiVA.org:smhi-549DiVA, id: diva2:806931
Tilgjengelig fra: 2015-04-22 Laget: 2015-04-20 Sist oppdatert: 2017-12-04bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Kjellström, Erik

Søk i DiVA

Av forfatter/redaktør
Kjellström, Erik
Av organisasjonen
I samme tidsskrift
Journal of Climate

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 140 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.7
|