Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Statistical methods for assessing and analysing the building performance in respect to the future climate
SMHI, Forskningsavdelningen, Klimatforskning - Rossby Centre.ORCID-id: 0000-0002-6495-1038
2012 (Engelska)Ingår i: Building and Environment, ISSN 0360-1323, E-ISSN 1873-684X, Vol. 53, s. 107-118Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Global warming and its effects on climate are of great concern. Climate change can affect buildings in different ways. Increased structural loads from wind and water, changes in energy need and decreased moisture durability of materials are some examples of the consequences. Future climate conditions are simulated by global climate models (GCMs). Downscaling by regional climate models (RCMs) provides weather data with suitable temporal and spatial resolutions for direct use in building simulations. There are two major challenges when the future climate data are used in building simulations. The first is to handle and analyse the huge amount of data. The second challenge is to assess the uncertainties in building simulations as a consequence of uncertainties in the future climate data. In this paper two statistical methods, which have been adopted from climatology, are introduced. Applications of the methods are illustrated by looking into two uncertainty factors of the future climate; operating RCMs at different spatial resolutions and with boundary data from different GCMs. The Ferro hypothesis is introduced as a nonparametric method for comparing data at different spatial resolutions. The method is quick and subtle enough to make the comparison. The parametric method of decomposition of variabilities is described and its application in data assessment is shown by considering RCM data forced by different GCMs. The method enables to study data and its variations in different time scales. It provides a useful summary about data and its variations which makes the comparison between several data sets easier. (C) 2012 Elsevier Ltd. All rights reserved.

Ort, förlag, år, upplaga, sidor
2012. Vol. 53, s. 107-118
Nyckelord [en]
Climate change, Building simulation, Statistical methods, Climate uncertainties, Decomposition of variabilities
Nationell ämneskategori
Klimatforskning
Forskningsämne
Klimat
Identifikatorer
URN: urn:nbn:se:smhi:diva-456DOI: 10.1016/j.buildenv.2012.01.015ISI: 000302436200012OAI: oai:DiVA.org:smhi-456DiVA, id: diva2:806297
Tillgänglig från: 2015-04-20 Skapad: 2015-04-14 Senast uppdaterad: 2017-12-04Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Kjellström, Erik

Sök vidare i DiVA

Av författaren/redaktören
Kjellström, Erik
Av organisationen
Klimatforskning - Rossby Centre
I samma tidskrift
Building and Environment
Klimatforskning

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 109 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.7
|