Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Snow-Induced PV Loss Modeling Using Production-Data Inferred PV System Models
SMHI, Forskningsavdelningen, Atmosfärisk fjärranalys.
SMHI, Samhälle och säkerhet.
2021 (Engelska)Ingår i: Energies, E-ISSN 1996-1073, Vol. 14, nr 6, artikel-id 1574Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Snow-induced photovoltaic (PV)-energy losses (snow losses) in snowy and cold locations vary up to 100% monthly and 34% annually, according to literature. Levels that illustrate the need for snow loss estimation using validated models. However, to our knowledge, all these models build on limited numbers of sites and winter seasons, and with limited climate diversity. To overcome this limitation in underlying statistics, we investigate the estimation of snow losses using a PV system's yield data together with freely available gridded weather datasets. To develop and illustrate this approach, 263 sites in northern Sweden are studied over multiple winters. Firstly, snow-free production is approximated by identifying snow-free days and using corresponding data to infer tilt and azimuth angles and a snow-free performance model incorporating shading effects, etc. This performance model approximates snow-free monthly yields with an average hourly standard deviation of 6.9%, indicating decent agreement. Secondly, snow losses are calculated as the difference between measured and modeled yield, showing annual snow losses up to 20% and means of 1.5-6.2% for winters with data for at least 89 sites. Thirdly, two existing snow loss estimation models are compared to our calculated snow losses, with the best match showing a correlation of 0.73 and less than 1% bias for annual snow losses. Based on these results, we argue that our approach enables studying snow losses for high numbers of PV systems and winter seasons using existing datasets.

Ort, förlag, år, upplaga, sidor
2021. Vol. 14, nr 6, artikel-id 1574
Nationell ämneskategori
Meteorologi och atmosfärforskning Klimatforskning
Forskningsämne
Fjärranalys
Identifikatorer
URN: urn:nbn:se:smhi:diva-6092DOI: 10.3390/en14061574ISI: 000634406900001OAI: oai:DiVA.org:smhi-6092DiVA, id: diva2:1547477
Tillgänglig från: 2021-04-27 Skapad: 2021-04-27 Senast uppdaterad: 2023-08-28Bibliografiskt granskad

Open Access i DiVA

Snow-Induced PV Loss Modeling Using Production-Data Inferred PV System Models(4089 kB)160 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 4089 kBChecksumma SHA-512
e3d544fdf46d9617c28d407b35a8e86a4dce0fd8fd511b7448ffe8ea9885aaf799e24dd1390acb61d56c5de4f5fd3c8919bb4e8461cce0710b4a84d6c2c4794c
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltext

Person

Landelius, TomasAndersson, Sandra

Sök vidare i DiVA

Av författaren/redaktören
Landelius, TomasAndersson, Sandra
Av organisationen
Atmosfärisk fjärranalysSamhälle och säkerhet
I samma tidskrift
Energies
Meteorologi och atmosfärforskningKlimatforskning

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 165 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 301 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf