Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Flood projections within the Niger River Basin under future land use and climate change
Vise andre og tillknytning
2016 (engelsk)Inngår i: Science of the Total Environment, ISSN 0048-9697, E-ISSN 1879-1026, Vol. 562, s. 666-677Artikkel i tidsskrift (Fagfellevurdert) Published
Resurstyp
Text
Abstract [en]

This study assesses future flood risk in the Niger River Basin (NRB), for the first time considering the simultaneous effects of both projected climate change and land use changes. For this purpose, an ecohydrological process-based model (SWIM) was set up and validated for past climate and land use dynamics of the entire NRB. Model runs for future flood risks were conducted with an ensemble of 18 climate models, 13 of them dynamically downscaled from the CORDEX Africa project and five statistically downscaled Earth System Models. Two climate and two land use change scenarios were used to cover a broad range of potential developments in the region. Two flood indicators (annual 90th percentile and the 20-year return flood) were used to assess the future flood risk for the Upper, Middle and Lower Niger as well as the Benue. The modeling results generally show increases of flood magnitudes when comparing a scenario period in the near future (2021-2050) with a base period (1976-2005). Land use effects are more uncertain, but trends and relative changes for the different catchments of the NRB seem robust. The dry areas of the Sahelian and Sudanian regions of the basin show a particularly high sensitivity to climatic and land use changes, with an alarming increase of flood magnitudes in parts. A scenario with continuing transformation of natural vegetation into agricultural land and urbanization intensifies the flood risk in all parts of the NRB, while a "regreening" scenario can reduce flood magnitudes to some extent. Yet, land use change effects were smaller when compared to the effects of climate change. In the face of an already existing adaptation deficit to catastrophic flooding in the region, the authors argue for a mix of adaptation and mitigation efforts in order to reduce the flood risk in the NRB. (C) 2016 Elsevier B.V. All rights reserved.

sted, utgiver, år, opplag, sider
2016. Vol. 562, s. 666-677
HSV kategori
Forskningsprogram
Hydrologi
Identifikatorer
URN: urn:nbn:se:smhi:diva-2194DOI: 10.1016/j.scitotenv.2016.04.021ISI: 000377372400065PubMedID: 27110979OAI: oai:DiVA.org:smhi-2194DiVA, id: diva2:947385
Tilgjengelig fra: 2016-07-08 Laget: 2016-07-08 Sist oppdatert: 2018-01-10bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMed

Person

Andersson, Jafet

Søk i DiVA

Av forfatter/redaktør
Andersson, Jafet
Av organisasjonen
I samme tidsskrift
Science of the Total Environment

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 679 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf