Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Assimilation of point SWE data into a distributed snow cover model comparing two contrasting methods
SMHI, Forskningsavdelningen, Hydrologi.
2014 (engelsk)Inngår i: Water resources research, ISSN 0043-1397, E-ISSN 1944-7973, Vol. 50, nr 10, s. 7816-7835Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

In alpine and high-latitude regions, water resource decision making often requires large-scale estimates of snow amounts and melt rates. Such estimates are available through distributed snow models which in some situations can be improved by assimilation of remote sensing observations. However, in regions with frequent cloud cover, complex topography, or large snow amounts satellite observations may feature information of limited quality. In this study, we examine whether assimilation of snow water equivalent (SWE) data from ground observations can improve model simulations in a region largely lacking reliable remote sensing observations. We combine the model output with the point data using three-dimensional sequential data assimilation methods, the ensemble Kalman filter, and statistical interpolation. The filter performance was assessed by comparing the simulation results against observed SWE and snow-covered fraction. We find that a method which assimilates fluxes (snowfall and melt rates computed from SWE) showed higher model performance than a control simulation not utilizing the filter algorithms. However, an alternative approach for updating the model results using the SWE data directly did not show a significantly higher performance than the control simulation. The results show that three-dimensional data assimilation methods can be useful for transferring information from point snow observations to the distributed snow model. Key Points <list id="wrcr21142-list-0001" list-type="bulleted"> <list-item id="wrcr21142-li-0001">Evaluating methods for assimilating snow observations into distributed models <list-item id="wrcr21142-li-0002">Assimilation can improve model skill also at locations without observations <list-item id="wrcr21142-li-0003">Assimilation of fluxes appears more successful than assimilation of states <doi origin="wiley" registered="yes">10.1002/(ISSN)1944-7973</doi

sted, utgiver, år, opplag, sider
2014. Vol. 50, nr 10, s. 7816-7835
Emneord [en]
distributed snow modeling, data assimilation, ensemble Kalman filter, optimal interpolation, point observations
HSV kategori
Forskningsprogram
Hydrologi
Identifikatorer
URN: urn:nbn:se:smhi:diva-102DOI: 10.1002/2014WR015302ISI: 000344783800016OAI: oai:DiVA.org:smhi-102DiVA, id: diva2:804969
Tilgjengelig fra: 2015-04-14 Laget: 2015-03-26 Sist oppdatert: 2018-01-11bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Person

Gustafsson, David

Søk i DiVA

Av forfatter/redaktør
Gustafsson, David
Av organisasjonen
I samme tidsskrift
Water resources research

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 314 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf